View source: R/breeding.diploid.R
| breeding.diploid | R Documentation |
Function to simulate a step in a breeding scheme
breeding.diploid(
population,
selection.size = 0,
selection.criteria = NULL,
selection.m.gen = NULL,
selection.f.gen = NULL,
selection.m.database = NULL,
selection.f.database = NULL,
selection.m.cohorts = NULL,
selection.f.cohorts = NULL,
max.selection.fullsib = Inf,
max.selection.halfsib = Inf,
class.m = 0,
class.f = 0,
add.class.cohorts = TRUE,
multiple.bve = "add",
selection.index.weights.m = NULL,
selection.index.weights.f = NULL,
selection.index.scale.m = NULL,
selection.index.scale.f = NULL,
selection.index.kinship = 0,
selection.index.gen = NULL,
selection.index.database = NULL,
selection.index.cohorts = NULL,
selection.highest = TRUE,
ignore.best = 0,
best.selection.ratio.m = 1,
best.selection.ratio.f = NULL,
best.selection.criteria.m = "bv",
best.selection.criteria.f = NULL,
best.selection.manual.ratio.m = NULL,
best.selection.manual.ratio.f = NULL,
best.selection.manual.reorder = TRUE,
selection.m.random.prob = NULL,
selection.f.random.prob = NULL,
reduced.selection.panel.m = NULL,
reduced.selection.panel.f = NULL,
threshold.selection.index = NULL,
threshold.selection.value = NULL,
threshold.selection.sign = ">",
threshold.selection.criteria = NULL,
threshold.selection = NULL,
threshold.sign = ">",
remove.duplicates = TRUE,
selection.m.miesenberger = FALSE,
selection.f.miesenberger = NULL,
selection.miesenberger.reliability.est = "derived",
miesenberger.trafo = 0,
sort.selected.pos = FALSE,
ogc = FALSE,
relationship.matrix.ogc = "pedigree",
depth.pedigree.ogc = 7,
ogc.target = "min.sKin",
ogc.uniform = NULL,
ogc.ub = NULL,
ogc.lb = NULL,
ogc.ub.sKin = NULL,
ogc.lb.BV = NULL,
ogc.ub.BV = NULL,
ogc.eq.BV = NULL,
ogc.ub.sKin.increase = NULL,
ogc.lb.BV.increase = NULL,
ogc.c1 = NULL,
ogc.isCandidate = NULL,
ogc.plots = TRUE,
ogc.weight = NULL,
ogc.freq = NULL,
selection.skip = FALSE,
breeding.size = 0,
breeding.size.litter = NULL,
name.cohort = NULL,
breeding.sex = NULL,
breeding.sex.random = FALSE,
sex.s = NULL,
add.gen = 0,
share.genotyped = 0,
phenotyping.child = NULL,
fixed.effects.p = NULL,
fixed.effects.freq = NULL,
new.class = 0L,
max.offspring = Inf,
max.offspring.individual.m = NULL,
max.offspring.individual.f = NULL,
max.offspring.individual.gen = NULL,
max.offspring.individual.database = NULL,
max.offspring.individual.cohorts = NULL,
max.litter = Inf,
max.mating.pair = Inf,
avoid.mating.fullsib = FALSE,
avoid.mating.halfsib = FALSE,
avoid.mating.parent = FALSE,
avoid.mating.inb = NULL,
avoid.mating.inb.quantile = NULL,
avoid.mating.inb.min = 0,
avoid.mating.kinship = NULL,
avoid.mating.kinship.quantile = NULL,
avoid.mating.kinship.gen = NULL,
avoid.mating.kinship.database = NULL,
avoid.mating.kinship.cohorts = NULL,
avoid.mating.kinship.min = 0,
avoid.mating.kinship.median = FALSE,
avoid.mating.depth.pedigree = 7,
avoid.mating.remove = FALSE,
avoid.mating.ignore = 0,
avoid.mating.resampling = 1000,
fixed.breeding = NULL,
fixed.breeding.best = NULL,
fixed.breeding.id = NULL,
fixed.assignment = FALSE,
breeding.all.combination = FALSE,
repeat.mating = NULL,
repeat.mating.copy = NULL,
repeat.mating.fixed = NULL,
repeat.mating.overwrite = TRUE,
repeat.mating.trait = 1,
repeat.mating.max = NULL,
repeat.mating.s = NULL,
same.sex.activ = FALSE,
same.sex.sex = 0.5,
same.sex.selfing = FALSE,
selfing.mating = FALSE,
selfing.sex = 0.5,
dh.mating = FALSE,
dh.sex = 0.5,
combine = FALSE,
copy.individual = FALSE,
copy.individual.m = FALSE,
copy.individual.f = FALSE,
copy.individual.keep.bve = TRUE,
copy.individual.keep.pheno = TRUE,
added.genotyped = NULL,
bv.ignore.traits = NULL,
generation.cores = NULL,
generation.core.make.small = FALSE,
pedigree.error = 0,
pedigree.unknown = 0,
genotyped.database = NULL,
genotyped.gen = NULL,
genotyped.cohorts = NULL,
genotyped.share = 1,
genotyped.array = 1,
genotyped.remove.gen = NULL,
genotyped.remove.database = NULL,
genotyped.remove.cohorts = NULL,
genotyped.remove.all.copy = TRUE,
genotyped.selected = FALSE,
phenotyping = NULL,
phenotyping.gen = NULL,
phenotyping.cohorts = NULL,
phenotyping.database = NULL,
n.observation = NULL,
phenotyping.class = NULL,
heritability = NULL,
repeatability = NULL,
multiple.observation = FALSE,
phenotyping.selected = FALSE,
share.phenotyped = 1,
offpheno.parents.gen = NULL,
offpheno.parents.database = NULL,
offpheno.parents.cohorts = NULL,
offpheno.offspring.gen = NULL,
offpheno.offspring.database = NULL,
offpheno.offspring.cohorts = NULL,
sigma.e = NULL,
sigma.e.gen = NULL,
sigma.e.cohorts = NULL,
sigma.e.database = NULL,
new.residual.correlation = NULL,
new.breeding.correlation = NULL,
phenotyping.trafo.parameter = NULL,
bve = FALSE,
bve.gen = NULL,
bve.cohorts = NULL,
bve.database = NULL,
relationship.matrix = "GBLUP",
depth.pedigree = 7,
singlestep.active = TRUE,
bve.ignore.traits = NULL,
bve.array = NULL,
bve.imputation = TRUE,
bve.imputation.errorrate = 0,
bve.all.genotyped = FALSE,
bve.insert.gen = NULL,
bve.insert.cohorts = NULL,
bve.insert.database = NULL,
variance.correction = "none",
bve.class = NULL,
sigma.g = NULL,
sigma.g.gen = NULL,
sigma.g.cohorts = NULL,
sigma.g.database = NULL,
forecast.sigma.g = NULL,
remove.effect.position = FALSE,
estimate.add.gen.var = FALSE,
estimate.pheno.var = FALSE,
bve.avoid.duplicates = TRUE,
calculate.reliability = FALSE,
estimate.reliability = FALSE,
bve.input.phenotype = "own",
mas.bve = FALSE,
mas.markers = NULL,
mas.number = 5,
mas.effects = NULL,
mas.geno = NULL,
bve.parent.mean = FALSE,
bve.grandparent.mean = FALSE,
bve.mean.between = "bvepheno",
bve.exclude.fixed.effects = NULL,
bve.beta.hat.approx = TRUE,
bve.per.sample.sigma.e = TRUE,
bve.p_i.list = NULL,
bve.p_i.gen = NULL,
bve.p_i.database = NULL,
bve.p_i.cohorts = NULL,
bve.p_i.exclude.nongenotyped = FALSE,
bve.use.all.copy = FALSE,
bve.pedigree.error = TRUE,
mobps.bve = TRUE,
mixblup.bve = FALSE,
blupf90.bve = FALSE,
mixblup.reliability = FALSE,
emmreml.bve = FALSE,
rrblup.bve = FALSE,
sommer.bve = FALSE,
sommer.multi.bve = FALSE,
BGLR.bve = FALSE,
pseudo.bve = FALSE,
pseudo.bve.accuracy = 1,
bve.solve = "exact",
mixblup.jeremie = FALSE,
mixblup.hpblup = FALSE,
mixblup.pedfile = TRUE,
mixblup.parfile = TRUE,
mixblup.datafile = TRUE,
mixblup.inputfile = TRUE,
mixblup.genofile = TRUE,
mixblup.path = NULL,
mixblup.path.pedfile = NULL,
mixblup.path.parfile = NULL,
mixblup.path.datafile = NULL,
mixblup.path.inputfile = NULL,
mixblup.path.genofile = NULL,
mixblup.full.path.genofile = NULL,
mixblup.files = "MiXBLUP_files",
mixblup.verbose = TRUE,
blupf90.verbose = TRUE,
mixblup.genetic.cov = NULL,
mixblup.residual.cov = NULL,
mixblup.lambda = 1,
mixblup.alpha = NULL,
mixblup.beta = NULL,
mixblup.omega = NULL,
mixblup.maxit = 5000,
mixblup.stopcrit = NULL,
mixblup.maf = 0.005,
mixblup.numproc = NULL,
mixblup.apy = FALSE,
mixblup.apy.core = NULL,
mixblup.ta = FALSE,
mixblup.tac = FALSE,
mixblup.skip = FALSE,
blupf90.skip = FALSE,
mixblup.restart = FALSE,
mixblup.nopeek = FALSE,
mixblup.calcinbr.s = FALSE,
mixblup.multiple.records = FALSE,
mixblup.attach = FALSE,
mixblup.debug = FALSE,
mixblup.plink = FALSE,
mixblup.cleanup = Inf,
blupf90.pedfile = TRUE,
blupf90.parfile = TRUE,
blupf90.datafile = TRUE,
blupf90.inputfile = TRUE,
blupf90.genofile = TRUE,
mixblup.dgv = FALSE,
mixblup.dgv.freq = NULL,
mixblup.dgv.effect = NULL,
blupf90.path = NULL,
renumf90.path = NULL,
blupf90.path.pedfile = NULL,
blupf90.path.parfile = NULL,
blupf90.path.datafile = NULL,
blupf90.path.inputfile = NULL,
blupf90.path.genofile = NULL,
blupf90.files = "blupf90_files",
blupf90.blksize = NULL,
blupf90.no.quality = FALSE,
blupf90.conv_crit = NULL,
BGLR.model = "RKHS",
BGLR.burnin = 500,
BGLR.iteration = 5000,
BGLR.print = TRUE,
BGLR.save = "RKHS",
BGLR.save.random = FALSE,
miraculix = NULL,
miraculix.cores = 1,
miraculix.mult = NULL,
miraculix.chol = TRUE,
miraculix.destroyA = TRUE,
estimate.u = FALSE,
fast.uhat = TRUE,
gwas.u = FALSE,
approx.residuals = TRUE,
gwas.gen = NULL,
gwas.cohorts = NULL,
gwas.database = NULL,
gwas.group.standard = FALSE,
y.gwas.used = "pheno",
gene.editing.offspring = FALSE,
gene.editing.best = FALSE,
gene.editing.offspring.sex = TRUE,
gene.editing.best.sex = TRUE,
nr.edits = 0,
culling.non.selected = FALSE,
culling.gen = NULL,
culling.database = NULL,
culling.cohorts = NULL,
culling.type = 0,
culling.time = Inf,
culling.name = "Not_named",
culling.bv1 = 0,
culling.share1 = NULL,
culling.bv2 = NULL,
culling.share2 = NULL,
culling.index = 0,
culling.single = TRUE,
culling.all.copy = TRUE,
mutation.rate = 10^-8,
remutation.rate = 10^-8,
recombination.rate = 1,
recombination.rate.trait = 0,
recombination.function = NULL,
recombination.minimum.distance = NULL,
recombination.distance.penalty = NULL,
recombination.distance.penalty.2 = NULL,
recom.f.indicator = NULL,
import.position.calculation = NULL,
duplication.rate = 0,
duplication.length = 0.01,
duplication.recombination = 1,
gen.architecture.m = 0,
gen.architecture.f = NULL,
add.architecture = NULL,
intern.func = 0,
delete.haplotypes = NULL,
delete.recombi = NULL,
delete.recombi.only.non.genotyped = FALSE,
delete.recombi.class = NULL,
delete.individuals = NULL,
delete.gen = NULL,
delete.sex = 1:2,
delete.same.origin = FALSE,
save.recombination.history = FALSE,
store.sparse = FALSE,
storage.save = 1.05,
verbose = TRUE,
report.accuracy = TRUE,
store.breeding.totals = FALSE,
store.bve.data = FALSE,
store.comp.times = TRUE,
store.comp.times.bve = TRUE,
store.comp.times.generation = TRUE,
store.effect.freq = FALSE,
Rprof = FALSE,
randomSeed = NULL,
display.progress = NULL,
time.point = 0,
age.point = NULL,
creating.type = 0,
import.relationship.matrix = NULL,
export.selected = FALSE,
export.selected.database = FALSE,
export.relationship.matrix = FALSE,
pen.assignments = NULL,
pen.size = NULL,
pen.by.sex = TRUE,
pen.by.litter = FALSE,
pen.size.overwrite = TRUE,
selection.m = NULL,
selection.f = NULL,
new.bv.observation.gen = NULL,
new.bv.observation.cohorts = NULL,
new.bv.observation.database = NULL,
best1.from.group = NULL,
best2.from.group = NULL,
best1.from.cohort = NULL,
best2.from.cohort = NULL,
new.bv.observation = NULL,
reduce.group = NULL,
reduce.group.selection = "random",
new.bv.child = NULL,
computation.A = NULL,
computation.A.ogc = NULL,
new.phenotype.correlation = NULL,
offspring.bve.parents.gen = NULL,
offspring.bve.parents.database = NULL,
offspring.bve.parents.cohorts = NULL,
offspring.bve.offspring.gen = NULL,
offspring.bve.offspring.database = NULL,
offspring.bve.offspring.cohorts = NULL,
input.phenotype = NULL,
multiple.bve.weights.m = 1,
multiple.bve.weights.f = NULL,
multiple.bve.scale.m = "bv_sd",
multiple.bve.scale.f = NULL,
use.recalculate.manual = NULL,
recalculate.manual.subset = 5000,
compute.grandparent.contribution = FALSE,
size.scaling = NULL,
parallel.internal = FALSE,
varg = FALSE,
gain.stats = FALSE,
next.id = NULL,
copy.individual.use = NULL,
copy.individual.use2 = NULL
)
population |
Population list |
selection.size |
Number of selected individuals as parents (default: all individuals in selection.m/f.gen/database/gen - alt: positive numbers) |
selection.criteria |
What to use in the selection process (default: "bve", alt: "bv", "pheno", "random", "offpheno") |
selection.m.gen, selection.m.cohorts, selection.m.database |
Generations/cohorts/groups available for selection of first/paternal parent |
selection.f.gen, selection.f.cohorts, selection.f.database |
Generations available for selection of maternal parent |
max.selection.fullsib |
Maximum number of individual to select from the same family (same sire & dam) |
max.selection.halfsib |
Maximum number of individual to select from the same family (same sire or same dam) |
class.m, class.f |
For selection only individuals from this class (included in selection.m/f.gen/database/cohorts) will be considered for selection (default: 0 - which is all individuals if never used class elsewhere) |
add.class.cohorts |
Initial classes of cohorts used in selection.m/f.cohorts are automatically added to class.m/f (default: TRUE) |
multiple.bve |
Way to handle multiple traits in selection (default: "add" - use values directly in an index, alt: "ranking" - ignore values but only use ranking per trait) |
selection.index.weights.m, selection.index.weights.f |
Weighting between traits (default: 1) |
selection.index.scale.m, selection.index.scale.f |
Default: "bv_sd"; Set to "pheno_sd" when using gains per phenotypic SD, "unit" when using gains per unit, "bve" when using estimated breeding values |
selection.index.kinship |
Include avg. kinship to a reference population (selection.index.gen/database/cohorts) as part of the selection index (Default: 0) |
selection.index.gen, selection.index.database, selection.index.cohorts |
Generation/cohorts/groups to use as a reference of the kinship value in the selection index |
selection.highest |
If FALSE to select individuals with lowest value for the selection criterium (default c(TRUE,TRUE) - (m,w)) |
ignore.best |
Not consider the top individuals of the selected individuals (e.g. to use 2-10 best individuals) |
best.selection.ratio.m, best.selection.ratio.f |
Ratio of the frequency of the selection of the best best individual and the worst best individual (default=1) |
best.selection.criteria.m, best.selection.criteria.f |
Criteria to calculate this ratio (default: "bv", alt: "bve", "pheno") |
best.selection.manual.ratio.m, best.selection.manual.ratio.f |
vector containing probability to draw from for every individual (e.g. c(0.1,0.2,0.7)) |
best.selection.manual.reorder |
Set to FALSE to not use the order from best to worst selected individual but plain order based on database-order |
selection.m.random.prob, selection.f.random.prob |
Use this parameter to control the probability of each individual to be selected when doing random selection |
reduced.selection.panel.m, reduced.selection.panel.f |
Use only a subset of individuals of the potential selected ones ("Split in user-interface") |
threshold.selection.index |
Selection index on which to access (matrix which one index per row) |
threshold.selection.value |
Minimum value in the selection index selected individuals have to have |
threshold.selection.sign |
Pick all individuals above (">") the threshold. Alt: ("<", "=", "<=", ">=") |
threshold.selection.criteria |
Criterium on which to evaluate the index (default: "bve", alt: "bv", "pheno") |
threshold.selection |
Minimum value in the selection index selected individuals have to have |
threshold.sign |
Pick all individuals above (">") the threshold. Alt: ("<", "=", "<=", ">=") |
remove.duplicates |
Set to FALSE to select the same individual multiple times when the gen/database/cohorts for selection contains it multiple times |
selection.m.miesenberger, selection.f.miesenberger |
Use Weighted selection index according to Miesenberger 1997 for paternal/maternal selection |
selection.miesenberger.reliability.est |
If available reliability estimated are used. If not use default: "derived" (cor(BVE,BV)^2) , alt: "heritability", "estimated" (SD BVE / SD Pheno) as replacement |
miesenberger.trafo |
Ignore all eigenvalues below this threshold and apply dimension reduction (default: 0 - use all) |
sort.selected.pos |
Set to TRUE to arrange selected individuals according to position in the database (not by breeding value) |
ogc |
If TRUE use optimal genetic contribution theory to perform selection ( This requires the use of the R-package optiSel) |
relationship.matrix.ogc |
Method to calculate relationship matrix for OGC (Default: "pedigree", alt: "vanRaden", "CE", "non_stand", "CE2", "CM") |
depth.pedigree.ogc |
Depth of the pedigree in generations (default: 7) |
ogc.target |
Target of OGC (default: "min.sKin" - minimize inbreeding; alt: "max.BV" / "min.BV" - maximize genetic gain; both under constrains selected below) |
ogc.uniform |
This corresponds to the uniform constrain in optiSel |
ogc.ub |
This corresponds to the ub constrain in optiSel |
ogc.lb |
This corresponds to the lb constrain in optiSel |
ogc.ub.sKin |
This corresponds to the ub.sKin constrain in optiSel |
ogc.lb.BV |
This corresponds to the lb.BV constrain in optiSel |
ogc.ub.BV |
This corresponds to the ub.BV constrain in optiSel |
ogc.eq.BV |
This corresponds to the eq.BV constrain in optiSel |
ogc.ub.sKin.increase |
This corresponds to the upper bound (current sKin + ogc.ub.sKin.increase) as ub.sKin in optiSel |
ogc.lb.BV.increase |
This corresponds to the lower bound (current BV + ogc.lb.BV.increase) as lb.BV in optiSel |
ogc.c1 |
Only applicable when TN-version of OGC is available |
ogc.isCandidate |
Only applicable when TN-version of OGC is available |
ogc.plots |
Only applicable when TN-version of OGC is available |
ogc.weight |
Only applicable when B4F-version of OGC is available |
ogc.freq |
Only applicable when B4F-version of OGC is available |
selection.skip |
Set to FALSE in case no selection of individuals should be performed (just skips some unneccessary computations) |
breeding.size |
Number of individuals to generate (default: 0, use vector with two entries to control offspring per sex) |
breeding.size.litter |
Number of litters to generate (default: NULL - use breeding.size; only single positive number input allowed) |
name.cohort |
Name of the newly added cohort |
breeding.sex |
Share of female individuals (if single value is used for breeding size; default: 0.5) |
breeding.sex.random |
If TRUE randomly chose sex of new individuals (default: FALSE - use expected values) |
sex.s |
Specify which newly added individuals are male (1) or female (2) |
add.gen |
Generation you want to add the new individuals to (default: New generation) |
share.genotyped |
Share of individuals newly generated individuals that are genotyped (Default: 0). Also applies if individuals are copied with copy.individual |
phenotyping.child |
Starting phenotypes of newly generated individuals (default: "zero", alt: "mean" of both parents, "obs" - regular observation) |
fixed.effects.p |
Parametrization for the fixed effects (default: c(0,0..,0), if multiple different parametrizations are possible use a matrix with one parametrization per row) |
fixed.effects.freq |
Frequency of each different parametrization of the fixed effects |
new.class |
Migration level of newly generated individuals (default: 0 / use vector for different classes for different sexes) |
max.offspring |
Maximum number of offspring per individual (default: c(Inf,Inf) - (m,w)) |
max.offspring.individual.m, max.offspring.individual.f |
Vector with maximum number of offspring for first/second parent (default: NULL). Order in the vector by order of selection |
max.offspring.individual.gen |
matrix with first column generation with limited number offspring, second column number of allowed offspring |
max.offspring.individual.database |
matrix with first four columns database with limited number offspring, fifth column number of allowed offspring |
max.offspring.individual.cohorts |
matrix with first column cohort with limited number offspring, second column number of allowed offspring |
max.litter |
Maximum number of litters per individual (default: c(Inf,Inf) - (m,w)) |
max.mating.pair |
Maximum number of matings between two specific individuals (default: Inf) |
avoid.mating.fullsib |
Set to TRUE to not generate offspring of full siblings |
avoid.mating.halfsib |
Set to TRUE to not generate offspring from half or full siblings |
avoid.mating.parent |
Set to TRUE to not generate offspring from parent / sibling matings |
avoid.mating.inb |
Maximum allowed expected inbreeding to allow a mating combination (based on kinships) |
avoid.mating.inb.quantile |
Use this to not perform mating between more related potential parents (quantile of all expected inbreeding levels) |
avoid.mating.inb.min, avoid.mating.kinship.min |
Share of mating to at minimum perform for each individual (default: 0) |
avoid.mating.kinship |
Maximum allowed expected kinship of an offspring to a reference group of individuals |
avoid.mating.kinship.quantile |
Maximum allowed expected kinship of an offspring to a reference group of individuals |
avoid.mating.kinship.gen, avoid.mating.kinship.database, avoid.mating.kinship.cohorts |
Gen/database/cohorts of individuals to consider as a reference pool in avoid.mating.kinship |
avoid.mating.kinship.median |
Set to TRUE to use median kinship instead of mean kinship in avoid.mating.kinship (default: FALSE) |
avoid.mating.depth.pedigree |
Depth of the pedigree to calculate expected inbreeding levels / kinships |
avoid.mating.remove |
Set to TRUE to automatically exclude any selected individuals from the sample of parents |
avoid.mating.ignore |
Set to value higher 0 for avoid.mating.inb/kinship restrictions to not always be applied |
avoid.mating.resampling |
Number of sampling attempts to avoid unwanted matings (( last couple of individuals otherwise can have unwanted relatedness, default = 1000)) |
fixed.breeding |
Set of targeted matings to perform (matrix with 7 columns: database position first parent (gen, sex, nr), database position second parent (gen,sex,nr), likelihood to be female (optional)) |
fixed.breeding.best |
Perform targeted matings in the group of selected individuals (matrix with 5 columns: position first parent (male/female pool of selected individuals, ranking in selected animals), position second parent (male/female pool of selected individuals, ranking in selected animals), likelihood to be female (optional)) |
fixed.breeding.id |
Set of target matings to perform (matrix with 3 columns: id first parent, id second parent, likelihood to be female (optional)) |
fixed.assignment |
Set to "bestbest" / TRUE for targeted mating of best-best individual till worst-worst (of selected). set to "bestworst" for best-worst mating |
breeding.all.combination |
Set to TRUE to automatically perform each mating combination possible exactly ones. |
repeat.mating |
Generate multiple mating from the same dam/sire combination (first column: number of offspring; second column: probability) |
repeat.mating.copy |
Generate multiple copies from a copy action (combine / copy.individual.m/f) (first column: number of offspring; second column: probability) |
repeat.mating.fixed |
Vector containing number of times each mating is repeated. This will overwrite sampling from repeat.mating / repeat.mating.copy (default: NULL) |
repeat.mating.overwrite |
Set to FALSE to not use the current repeat.mating / repeat.mating.copy input as the new standard values (default: TRUE) |
repeat.mating.trait |
Trait that should be linked to the litter size |
repeat.mating.max |
Maximum number of individuals in a litter |
repeat.mating.s |
Use this parameter to manually provide the size of each litter generated |
same.sex.activ |
If TRUE allow matings of individuals of same sex (Sex here is a general term with the first sex referring to the first parent, second sex second parent) |
same.sex.sex |
Probability to use female individuals as parents (default: 0.5) |
same.sex.selfing |
Set to TRUE to allow for selfing when using same.sex matings (default: FALSE) |
selfing.mating |
If TRUE generate new individuals via selfing |
selfing.sex |
Share of female individuals used for selfing (default: 0.5) |
dh.mating |
If TRUE generate a DH-line in mating process |
dh.sex |
Share of DH-lines generated from selected female individuals |
combine |
Copy existing individuals (e.g. to merge individuals from different groups in a joined cohort). Individuals to use are used as the first parent |
copy.individual |
Set TRUE to generate a copy of an already existing individual. If only one of the sexes has individuals to select from it will automatically detect with sex to chose. Otherwise the first/male parent will be copied |
copy.individual.m, copy.individual.f |
If TRUE generate exactly one copy of all selected male/female in a new cohort (or more by setting breeding.size) |
copy.individual.keep.bve |
Set to FALSE to not keep estimated breeding value in case of use of copying individuals instead of regular meiosis |
copy.individual.keep.pheno |
Set to FALSE to not keep phenotypes in case of use of copying individuals instead of regular meiosis |
added.genotyped |
(OLD! use share.genotyped) Share of individuals that is additionally genotyped (only for copy.individual, default: 0) |
bv.ignore.traits |
Vector of traits to ignore in the calculation of the genomic value (default: NULL; Only recommended for high number of traits and experienced users!) |
generation.cores |
Number of cores used for the generation of new individuals (This will only be active when generating more than 500 individuals) |
generation.core.make.small |
Set to TRUE to delete not necessary individuals during parallelization |
pedigree.error |
Share of errors in the pedigree (default: 0; vector with two entries for errors on male/female side) |
pedigree.unknown |
Share of individuals with unknown parents (default: 0; vector with two entries for differences in unknown-share between male/female side) |
genotyped.gen, genotyped.cohorts, genotyped.database |
Generations/cohorts/groups to generate genotype data (that can be used in a BVE) |
genotyped.share |
Share of individuals in genotyped.gen/database/cohort to generate genotype data from (default: 1) |
genotyped.array |
Genotyping array used |
genotyped.remove.gen, genotyped.remove.database, genotyped.remove.cohorts |
Generations/cohorts/groups from which to remove genotyping information (this will affect all copies of an individual unless genotyped.remove.all.copy is set to FALSE) |
genotyped.remove.all.copy |
Set to FALSE to only change the genotyping state of this particular copy of an individual (default: TRUE) |
genotyped.selected |
Set to TRUE to genotype all selected individuals |
phenotyping |
Quick access to phenotyping for (all: "all", non-phenotyped: "non_obs", non-phenotyped male: "non_obs_m", non-phenotyped female: "non_obs_f") |
phenotyping.gen, phenotyping.cohorts, phenotyping.database |
Generations/cohorts/groups from which to generate additional phenotypes |
n.observation |
Number of phenotypic observations generated per trait and per individuals (use repeatability to control correlation between observations) |
phenotyping.class |
Classes of individuals for which to generate phenotypes (default: NULL –> all classes) |
heritability |
Use sigma.e to obtain a certain heritability (default: NULL) |
repeatability |
Set this to control the share of the residual variance (sigma.e) that is permanent (there for each observation) |
multiple.observation |
If an already phenotyped trait is phenotyped again this will on NOT lead to an additional phenotyped observation unless this is set to TRUE |
phenotyping.selected |
Set to TRUE to phenotype all selected individuals |
share.phenotyped |
Share of the individuals to phenotype (use vector for different probabilities for different traits) |
offpheno.parents.gen, offpheno.parents.database, offpheno.parents.cohorts |
Generations/groups/cohorts to consider to derive phenotype from offspring phenotypes |
offpheno.offspring.gen, offpheno.offspring.cohorts, offpheno.offspring.database |
Active generations/cohorts/groups for import of offspring phenotypes |
sigma.e |
Enviromental standard deviation (default: use sigma.e from last run / usually fit by use of heritability; if never provided: 10; used in BVE for variance components if manually set) |
sigma.e.gen, sigma.e.cohorts, sigma.e.database |
Generations/cohorts/groups to consider when estimating sigma.e when using heritability |
new.residual.correlation |
Correlation of the simulated residual variance |
new.breeding.correlation |
Correlation of the simulated genetic variance (only impacts non-QTL based traits. Needs to be fit in creating.diploid/trait for QTL-based traits) |
phenotyping.trafo.parameter |
Additional input parameter for phenotypic transformation function |
bve |
If TRUE perform a breeding value estimation (default: FALSE) |
bve.gen, bve.cohorts, bve.database |
Generations/Groups/Cohorts of individuals to consider in breeding value estimation (default: NULL) |
relationship.matrix |
Method to calculate relationship matrix for the breeding value estimation. This will automatically chosen between GBLUP, ssGBLUP, pBLUP based on if genotyped individuals are available (Default: "GBLUP", alt: "pedigree", "CE", "non_stand", "CE2", "CM") |
depth.pedigree |
Depth of the pedigree in generations (default: 7) |
singlestep.active |
Set FALSE remove all individuals without genomic data from the breeding value estimation |
bve.ignore.traits |
Vector of traits to ignore in the breeding value estimation (default: NULL, use: "zero" to not consider traits with 0 index weight in selection.index.weights.m/.w) |
bve.array |
Array to use in the breeding value estimation (default: NULL; chose largest possible based on used individuals in BVE) |
bve.imputation |
Set to FALSE to not perform imputation up to the highest marker density of genotyping data that is available |
bve.imputation.errorrate |
Share of errors in the imputation procedure (default: 0) |
bve.all.genotyped |
Set to TRUE to act as if every individual in the breeding value estimation has been genotyped |
bve.insert.gen, bve.insert.cohorts, bve.insert.database |
Generations/Groups/Cohorts of individuals to compute breeding values for (default: all groups in bve.database) |
variance.correction |
Correct for "parental.mean" or "generation.mean" in the estimation of sigma.g for BVE / sigma.e estimation (default: "none") |
bve.class |
Consider only individuals of those class classes in breeding value estimation (default: NULL - use all) |
sigma.g |
Genetic standard deviation (default: calculated based on individuals in BVE ; used in BVE for variance components if manually set; mostly recommended to be used for non-QTL based traits) |
sigma.g.gen, sigma.g.cohorts, sigma.g.database |
Generations/cohorts/groups to consider when estimating sigma.g |
forecast.sigma.g |
Set FALSE to not estimate sigma.g (Default: TRUE // in case sigma.g is set this is automatically set to FALSE) |
remove.effect.position |
If TRUE remove real QTLs in breeding value estimation |
estimate.add.gen.var |
If TRUE estimate additive genetic variance and heritability based on parent model |
estimate.pheno.var |
If TRUE estimate total variance in breeding value estimation |
bve.avoid.duplicates |
If set to FALSE multiple generations of the same individual can be used in the bve (only possible by using copy.individual to generate individuals) |
calculate.reliability |
Set TRUE to calculate a reliability when performing Direct-Mixed-Model BVE |
estimate.reliability |
Set TRUE to estimate the reliability in the BVE by calculating the correlation between estimated and real breeding values |
bve.input.phenotype |
Select what to use in BVE (default: own phenotype ("own"), offspring phenotype ("off"), their average ("mean") or a weighted average ("weighted")) |
mas.bve |
If TRUE use marker assisted selection in the breeding value estimation |
mas.markers |
Vector containing markers to be used in marker assisted selection |
mas.number |
If no markers are provided this nr of markers is selected (if single marker QTL are present highest effect markers are prioritized) |
mas.effects |
Effects assigned to the MAS markers (Default: estimated via lm()) |
mas.geno |
Genotype dataset used in MAS (default: NULL, automatic internal calculation) |
bve.parent.mean |
Set to TRUE to use the average parental performance as the breeding value estimate |
bve.grandparent.mean |
Set to TRUE to use the average grandparental performance as the breeding value estimate |
bve.mean.between |
Select if you want to use the "bve", "bv", "pheno" or "bvepheno" to form the mean (default: "bvepheno" - if available bve, else pheno) |
bve.exclude.fixed.effects |
Vector of fixed effects to ignore in the BVE (default: NULL) |
bve.beta.hat.approx |
Set to FALSE to use the true underlying value for beta_hat for the fixed effect in the direct BVE model. rrBLUP, BGLR, sommer will always estimate beta_hat. |
bve.per.sample.sigma.e |
Set to FALSE to deactivate the use of a heritability based on the number of observations generated per sample |
bve.p_i.list |
Vector of allele frequencies to be used when calculating the genomic relationship matrix (default: calculate them based on Z) |
bve.p_i.gen, bve.p_i.database, bve.p_i.cohorts |
Generations/cohorts/groups to use when manually calculating allele frequencies for genomic relationship matrix |
bve.p_i.exclude.nongenotyped |
Set to TRUE to exclude non-genotyped individuals when calculating allele frequencies for genomic relationship matrix standardization |
bve.use.all.copy |
Set to TRUE to use phenotypes and genotyped status from all copies of an individual instead of just the provided ones in the bve.gen/database/cohorts (default: FALSE) |
bve.pedigree.error |
Set to FALSE to ignore/correct for any pedigree errors |
mobps.bve |
If TRUE predict BVEs in direct estimation with assumed known heritability (default: TRUE; activating use of any other BVE method to TRUE will overwrite this) |
mixblup.bve |
Set to TRUE to activate breeding value estimation via MiXBLUP (requires MiXBLUP license!) |
blupf90.bve |
Set to TRUE to activate breeding value estimation via BLUPF90 (requires blupf90 software!) |
mixblup.reliability |
Set to TRUE to activate breeding value estimation via MiXBLUP (requires MiXBLUP license!) |
emmreml.bve |
If TRUE use REML estimator from R-package EMMREML in breeding value estimation |
rrblup.bve |
If TRUE use REML estimator from R-package rrBLUP in breeding value estimation |
sommer.bve |
If TRUE use REML estimator from R-package sommer in breeding value estimation |
sommer.multi.bve |
Set TRUE to use a multi-trait model in the R-package sommer for BVE |
BGLR.bve |
If TRUE use BGLR to perform breeding value estimation |
pseudo.bve |
If set to TRUE the breeding value estimation will be simulated with resulting accuracy pseudo.bve.accuracy (default: 1) |
pseudo.bve.accuracy |
The accuracy to be obtained in the "pseudo" - breeding value estimation |
bve.solve |
Provide solver to be used in BVE (default: "exact" solution via inversion, alt: "pcg", function with inputs A, b and output y_hat) |
mixblup.jeremie |
Set to TRUE to use Jeremies suggested MiXBLUP settings |
mixblup.hpblup |
Set to TRUE to use hpblup in MiXBLUP (default: FALSE) |
mixblup.pedfile |
Set to FALSE to manually generate your MiXBLUP pedfile |
mixblup.parfile |
Set to FALSE to manually generate your MiXBLUP parfile |
mixblup.datafile |
Set to FALSE to manually write your MiXBLUP datafile |
mixblup.inputfile |
Set to FALSE to manually write your MiXBLUP inputfile |
mixblup.genofile |
Set to FALSE to manually write the MiXBLUP genotypefile |
mixblup.path |
Provide path to MiXBLUP.exe (default is your working directory: Windows: MixBLUP; Linux ./MixBLUP.exe) |
mixblup.path.pedfile |
Path from where to import the MiXBLUP pedfile |
mixblup.path.parfile |
Path from where to import the MiXBLUP parfile |
mixblup.path.datafile |
Path from where to import the MiXBLUP datafile |
mixblup.path.inputfile |
Path from where to import the MiXBLUP inputfile |
mixblup.path.genofile |
Path from where to import the MiXBLUP genofile |
mixblup.full.path.genofile |
Path from where to import the MiXBLUP genofile |
mixblup.files |
Directory to generate all files generated when using MiXBLUP (default: MiXBLUP_files/ ) |
mixblup.verbose |
Set to TRUE to display MiXBLUP prints |
blupf90.verbose |
Set to TRUE to display blupf90 prints |
mixblup.genetic.cov |
Provide genetic covariance matrix to be used in MiXBLUP (lower-triangle is sufficent) (default: underlying true values) |
mixblup.residual.cov |
Provide residual covariance matrix to be used in MiXBLUP (lower-triangle is sufficent) (default: underlying true values) |
mixblup.lambda |
Lambda parameter in MiXBLUP (default: 1) |
mixblup.alpha |
Alpha parameter in MiXBLUP (default: 0.95, with alpha + beta = 1 , warning: MiXBLUP software this is 1) |
mixblup.beta |
Beta parameter in MiXBLUP (default: 0.05, with alpha + beta = 1 , warning: MiXBLUP software this is 0) |
mixblup.omega |
Omega parameter in MiXBLUP (default: mixblup.lambda) |
mixblup.maxit |
!Maxit qualifier in MiXBLUP (default: 5.000) |
mixblup.stopcrit |
!STOPCRIT qualifier in MiXBLUP (default: not used, suggested value 1.E-4 for ssGBLUP) // will overwrite maxit |
mixblup.maf |
!MAF qualifier in MiXBLUP (default: 0.005) |
mixblup.numproc |
Numproc parameter in MiXBLUP (default: not set // 1) |
mixblup.apy |
Set to TRUE to use APY inverse in MiXBLUP (default: FALSE) |
mixblup.apy.core |
Number of core individuals in the APY algorithm (default: 5000) |
mixblup.ta |
Set to TRUE to use the !Ta flag in MixBLUP |
mixblup.tac |
Set to TRUE to use the !TAC flag in MixBLUP |
mixblup.skip |
Set to TRUE to skip the actually system call to MiXBLUP and only write the MiXBLUP files |
blupf90.skip |
Set to TRUE to skip the actually system calls of blupf90 and only write the blupf90 input files |
mixblup.restart |
Set to TRUE to set the !RESTART flag in MiXBLUP (requires a "Solunf" file in the working directory) |
mixblup.nopeek |
Set to TRUE to set the !NOPEEK flag in MiXBLUP |
mixblup.calcinbr.s |
Set to TRUE to set the !CalcInbr flag to S |
mixblup.multiple.records |
Set to TRUE to write multiple phenotypic records for an individual |
mixblup.attach |
Set TRUE to just extent the existing genotype file instead of writting it completely new |
mixblup.debug |
Set TRUE to set debugging flags for mixblup call (-Dmst > mixblup_debug.log) (default: FALSE) |
mixblup.plink |
Set TRUE to write genotype files in PLINK format (requires R-package genio, default: FALSE) |
mixblup.cleanup |
Delete all mixblup output files above the indicated size after MiXBLUP run completes (default: Inf) |
blupf90.pedfile |
Set to FALSE to manually generate your MiXBLUP pedfile |
blupf90.parfile |
Set to FALSE to manually generate your MiXBLUP parfile |
blupf90.datafile |
Set to FALSE to manually generate your blupf90 datafile |
blupf90.inputfile |
Set to FALSE to manually write your MiXBLUP inputfile |
blupf90.genofile |
Set to FALSE to manually write the blupf90 genotypefile |
mixblup.dgv |
Set TRUE to use DGV-PBLUP (Only applicable with TAC-BLUP) |
mixblup.dgv.freq |
Path of allele frequency file for DGV-PBLUP |
mixblup.dgv.effect |
Path of SNP effect file for DGV-PBLUP |
blupf90.path |
Provide path to blupf90 (default is your working directory: Windows: ./blupf90+.exe ; Linux ./blupf90+.exe) |
renumf90.path |
Provide path to blupf90 (default is your working directory: Windows: ./renumf90.exe ; Linux ./renumf90.exe) |
blupf90.path.pedfile |
Path from where to import the blupf90 pedfile |
blupf90.path.parfile |
Path from where to import the blupf90 parfile |
blupf90.path.datafile |
Path from where to import the blupf90 data file |
blupf90.path.inputfile |
Path from where to import the blupf90 inputfile |
blupf90.path.genofile |
Path from where to import the blupf90 genotype file |
blupf90.files |
Directory to generate all files generated when using blupf90 (default: blupf90_files/ ) |
blupf90.blksize |
blupf90 parameter blksize (Default: number of traits) |
blupf90.no.quality |
blupf90 setting OPTION no_quality_control (Default: FALSE) |
blupf90.conv_crit |
blupf90 parameter conv_crit (Default: blupf90 default) |
BGLR.model |
Select which BGLR model to use (default: "RKHS", alt: "BRR", "BL", "BayesA", "BayesB", "BayesC") |
BGLR.burnin |
Number of burn-in steps in BGLR (default: 1000) |
BGLR.iteration |
Number of iterations in BGLR (default: 5000) |
BGLR.print |
If TRUE set verbose to TRUE in BGLR |
BGLR.save |
Method to use in BGLR (default: "RKHS" - alt: NON currently) |
BGLR.save.random |
Add random number to store location of internal BGLR computations (only needed when simulating a lot in parallel!) |
miraculix |
If TRUE use miraculix to perform computations (ideally already generate population in creating.diploid with this; default: automatic detection from population list) |
miraculix.cores |
Number of cores used in miraculix applications (default: 1) |
miraculix.mult |
If TRUE use miraculix for matrix multiplications even if miraculix is not used for storage |
miraculix.chol |
Set to FALSE to deactive miraculix based Cholesky-decomposition (default: TRUE) |
miraculix.destroyA |
If FALSE A will not be destroyed in the process of inversion (less computing / more memory) |
estimate.u |
If TRUE estimate u in breeding value estimation (Y = Xb + Zu + e) |
fast.uhat |
Set to FALSE to derive inverse of A in rrBLUP (only required when this becomes numerical unstable otherwise) |
gwas.u |
If TRUE estimate u via GWAS (relevant for gene editing) |
approx.residuals |
If FALSE calculate the variance for each marker separatly instead of using a set variance (does not change order - only p-values) |
gwas.gen, gwas.cohorts, gwas.database |
Generations/cohorts/groups to consider in GWAS analysis |
gwas.group.standard |
If TRUE standardize phenotypes by group mean |
y.gwas.used |
What y value to use in GWAS study (Default: "pheno", alt: "bv", "bve") |
gene.editing.offspring |
If TRUE perform gene editing on newly generated individuals |
gene.editing.best |
If TRUE perform gene editing on selected individuals |
gene.editing.offspring.sex |
Which sex to perform editing on (Default c(TRUE,TRUE), mw) |
gene.editing.best.sex |
Which sex to perform editing on (Default c(TRUE,TRUE), mw) |
nr.edits |
Number of edits to perform per individual |
culling.non.selected |
Set TRUE to cull all non-selected individuals (default: FALSE) |
culling.gen, culling.cohorts, culling.database |
Generations/cohorst/groups to consider to culling |
culling.type |
Default: 0, can be set to code different type of culling reasons (e.g. 0 - aging, 1 - selection, 2 - health) |
culling.time |
Age of the individuals at culling // use time.point if the age of individuals is variable and culling is executed on individuals of different ages culled at the same time |
culling.name |
Name of the culling action (user-interface stuff) |
culling.bv1 |
Reference Breeding value |
culling.share1 |
Probability of death for individuals with bv1 |
culling.bv2 |
Alternative breeding value (linear extended for other bvs) |
culling.share2 |
Probability of death for individuals with bv2 |
culling.index |
Genomic index (default:0 - no genomic impact, use: "lastindex" to use the last selection index applied in selection) |
culling.single |
Set to FALSE to not apply the culling module on all individuals of the cohort |
culling.all.copy |
Set to FALSE to not kill copies of the same individual in the culling module |
mutation.rate |
Mutation rate in each marker (default: 10^-8) |
remutation.rate |
Remutation rate in each marker (default: 10^-8) |
recombination.rate |
Average number of recombination per 1 length unit (default: 1M) |
recombination.rate.trait |
Select a trait which BV will be used as a scalar for the expected number of recombination (default: 0) |
recombination.function |
Function used to calculate position of recombination events (default: MoBPS::recombination.function.haldane()) |
recombination.minimum.distance |
Minimum distance between two points of recombination (default: 0) |
recombination.distance.penalty |
Reduced probability for recombination events closer than this value - linear penalty (default: 0) |
recombination.distance.penalty.2 |
Reduced probability for recombination events closer than this value - quadratic penalty (default: 0) |
recom.f.indicator |
Use step function for recombination map (transform snp.positions if possible instead) |
import.position.calculation |
Function to calculate recombination point into adjacent/following SNP |
duplication.rate |
Share of recombination points with a duplication (default: 0 - DEACTIVATED) |
duplication.length |
Average length of a duplication (Exponentially distributed) |
duplication.recombination |
Average number of recombinations per 1 length uit of duplication (default: 1) |
gen.architecture.m, gen.architecture.f |
Genetic architecture for male/female individuals (default: 0 - no transformation) |
add.architecture |
List with two vectors containing (A: length of chromosomes, B: position in cM of SNPs) |
intern.func |
Chose which function will be used for simulation of meiosis (default: 0, alt: 1,2) - can be faster for specific cases |
delete.haplotypes |
Generations for with haplotypes of founders can be deleted from population list for memory reduction (default: NULL) |
delete.recombi |
Generations for which recombination points can be deleted from the population list for memory reduction (default: NULL) |
delete.recombi.only.non.genotyped |
Set TRUE to only remove points of recombination for non-genotyped individuals |
delete.recombi.class |
Set TRUE to only remove points of recombination for individuals from a specific class |
delete.individuals |
Generations for with individuals are completely deleted from population list for memory reduction (default: NULL) |
delete.gen |
Generations to entirely deleted fro population list for memory reduction (default: NULL) |
delete.sex |
Remove all individuals from these sex from generation delete.individuals (default: 1:2 ; note:delete individuals=NULL) |
delete.same.origin |
If TRUE delete recombination points when genetic origin of adjacent segments is the same |
save.recombination.history |
If TRUE store the time point of each recombination event |
store.sparse |
Set to TRUE to store the pedigree relationship matrix as a sparse matrix |
storage.save |
Lower numbers will lead to less memory but slightly higher computing time for calculation of the pedigree relationship matrix (default: 1.5, min: 1) |
verbose |
Set to FALSE to not display any prints |
report.accuracy |
Report the accuracy of the breeding value estimation |
store.breeding.totals |
If TRUE store information on selected individuals in $info$breeding.totals (default: FALSE) |
store.bve.data |
If TRUE store information of bve in $info$bve.data |
store.comp.times |
If TRUE store computation times in $info$comp.times.general (default: TRUE) |
store.comp.times.bve |
If TRUE store computation times of breeding value estimation in $info$comp.times.bve (default: TRUE) |
store.comp.times.generation |
If TRUE store computation times of mating simulations in $info$comp.times.generation (default: TRUE) |
store.effect.freq |
If TRUE store the allele frequency of effect markers per generation |
Rprof |
Store computation times of each function |
randomSeed |
Set random seed of the process |
display.progress |
Set FALSE to not display progress bars. Setting verbose to FALSE will automatically deactive progress bars |
time.point |
Time point at which the new individuals are generated |
age.point |
Time point at which the new individuals are born (default: time.point - mostly useful in the founder generation) |
creating.type |
Technique to generate new individuals (use mostly intended for web-based application) |
import.relationship.matrix |
Input the wanted relationship matrix with this parameter (default: NULL - relationship matrix will be calculated from other sources) |
export.selected |
Set to TRUE to export the list of selected individuals |
export.selected.database |
Set to TRUE to export a database of the selected individuals |
export.relationship.matrix |
Export the relationship matrix used in the breeding value estimation |
pen.assignments |
This is a placeholder to deactivate this module for now |
pen.size |
Pen size. When different types of pen are used: use a matrix with two columns coding Number of individuals per pen, Probability for each pen size |
pen.by.sex |
Only individuals of the same sex are put in the same pen (default: TRUE) |
pen.by.litter |
Only individuals of the same litter are put in the same pen (default: FALSE) |
pen.size.overwrite |
Set to FALSE to not use the input for pen.size for down-stream use of breeding.diploid (default: TRUE) |
selection.m, selection.f |
(OLD! use selection criteria) Selection criteria for male/female individuals (Set to "random" to randomly select individuals - default: "function" based on selection.criteria ((usually breeding values))) |
new.bv.observation.gen, new.bv.observation.cohorts, new.bv.observation.database |
(OLD! use phenotyping.gen/cohorts/database) Vector of generation from which to generate additional phenotypes |
best1.from.group, best1.from.cohort |
(OLD!- use selection.m.database/cohorts) Groups of individuals to consider as First Parent / Father (also female individuals are possible) |
best2.from.group, best2.from.cohort |
(OLD!- use selection.f.database/cohorts) Groups of individuals to consider as Second Parent / Mother (also male individuals are possible) |
new.bv.observation |
(OLD! - use phenotyping) Quick access to phenotyping for (all: "all", non-phenotyped: "non_obs", non-phenotyped male: "non_obs_m", non-phenotyped female: "non_obs_f") |
reduce.group |
(OLD! - use culling modules) Groups of individuals for reduce to a new size (by changing class to -1) |
reduce.group.selection |
(OLD! - use culling modules) Selection criteria for reduction of groups (cf. selection.m / selection.f - default: "random") |
new.bv.child |
(OLD! - use phenotyping.child) Starting phenotypes of newly generated individuals (default: "zero", alt: "mean" of both parents, "obs" - regular observation) |
computation.A |
(OLD! - use relationship.matrix) Method to calculate relationship matrix for the breeding value estimation (Default: "vanRaden", alt: "pedigree", "CE", "non_stand", "CE2", "CM") |
computation.A.ogc |
(OLD! use relationship.matrix.ogc) Method to calculate pedigree matrix in OGC (Default: "pedigree", alt: "vanRaden", "CE", "non_stand", "CE2", "CM") |
new.phenotype.correlation |
(OLD! - use new.residual.correlation!) Correlation of the simulated enviromental variance |
offspring.bve.parents.gen, offspring.bve.parents.cohorts, offspring.bve.parents.database |
(OLD! use offpheno.parents.gen/database/cohorts) Generations/cohorts/groups to consider to derive phenotype from offspring phenotypes |
offspring.bve.offspring.gen, offspring.bve.offspring.cohorts, offspring.bve.offspring.database |
(OLD! use offpheno.offspring.gen/database/cohorts) Active generations/cohorts/groups for import of offspring phenotypes |
input.phenotype |
(OLD! use bve.input.phenotype) Select what to use in BVE (default: own phenotype ("own"), offspring phenotype ("off"), their average ("mean") or a weighted average ("weighted")) |
multiple.bve.weights.m, multiple.bve.weights.f |
(OLD! use selection.index.weights.m/f) Weighting between traits (default: 1) |
multiple.bve.scale.m, multiple.bve.scale.f |
(OLD! use selection.index.scale.m/f) Default: "bv_sd"; Set to "pheno_sd" when using gains per phenotypic SD, "unit" when using gains per unit, "bve" when using estimated breeding values |
use.recalculate.manual |
Set to TRUE to use recalculate.manual to calculate genomic values (all individuals and traits jointly, default: FALSE) |
recalculate.manual.subset |
Maximum number of individuals to process at the same time (( genotypes are in memory )) |
compute.grandparent.contribution |
compute share of genome inherited from each grandparent based on recombination points (default: FALSE) |
size.scaling |
Set to value to scale all input for breeding.size / selection.size (This will not work for all breeding programs / less general than json.simulation) |
parallel.internal |
Internal parameter for the parallelization |
varg |
Experimental parameter for Tobias Niehoff (do not touch!) |
gain.stats |
Set to FALSE to not compute genetic gains compared to previous generation (selection) |
next.id |
Id to assign to first next individual generated |
copy.individual.use, copy.individual.use2 |
Use this to skip copying some entries from the internal storage ((minor speed up)) |
Population-list
population <- creating.diploid(nsnp=1000, nindi=100)
population <- breeding.diploid(population, breeding.size=100, selection.size=c(25,25))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.