Nothing
## Methods for standard generic functions (defined in package 'stats')
## for objects for which they are missing from original packages.
##------------------------------------------------------------------------------
# default 'family' method
##------------------------------------------------------------------------------
`family.default` <-
function (object, ...) {
cl <- get_call(object)
if(is.null(cl))
return(NULL)
fam <- cl$family
if(is.null(fam))
fam <- formals(match.fun(cl[[1L]]))$family
if(is.null(fam))
return(NA)
switch(mode(fam), call = eval(fam), name =, character = match.fun(fam)())
}
##------------------------------------------------------------------------------
## package 'glmmML'
##------------------------------------------------------------------------------
# this replaces the original method, merely to get rid of the annoying behaviour
# in summary.glmML. it does not do anything except for printing the model
# output.
`summary.glmmML` <-
function(object, ...) object
##------------------------------------------------------------------------------
## package 'nlme'
##------------------------------------------------------------------------------
`family.gls` <-
`family.lme` <-
function (object, ...) {
if (inherits(object$family, "family")) object$family else gaussian()
}
`model.frame.lme` <-
function (formula, random = FALSE, ...) {
x <- formula
frm <- formula(x)
if(random) {
for(reStruct in x$modelStruct$reStruct)
frm[[3L]] <- call("+", frm[[3L]], attr(reStruct, "formula")[[2L]])
}
mfArgs <- list(formula = frm, data = x$data[rownames(x$fitted), ], drop.unused.levels = TRUE)
do.call("model.frame", mfArgs)
#droplevels(do.call("model.frame", mfArgs))
}
`model.matrix.lme` <-
function (object, random = FALSE, ...) {
mf <- model.frame(object, random = random)
model.matrix(formula(terms(mf)), mf, contrasts.arg = object$contrasts)
}
##------------------------------------------------------------------------------
## package 'betareg'
##------------------------------------------------------------------------------
family.betareg <-
function (object, ...) {
ret <- binomial(object$link$mean)
ret$family <- "Beta regression"
for(a in c("variance", "dev.resids", "aic", "simulate"))
body(ret[[a]]) <- quote({.NotImplemented()})
ret$initialize <- expression()
ret$link.precision <- object$link$precision
ret
}
##------------------------------------------------------------------------------
## package 'coxme'
##------------------------------------------------------------------------------
`formula.coxme` <-
function(x, ...) {
ret <- x$formulaList$fixed
f <- ret[[3L]]
for(f1 in x$formulaList$random) f <- call("+", f, f1)
ret[[3L]] <- f
ret
}
`formula.lmekin` <-
function(x, ...) eval.parent(x$call$formula)
##------------------------------------------------------------------------------
## package 'pscl'
##------------------------------------------------------------------------------
`family.zeroinfl` <-
function(object, ...) binomial(link = object$link)
##------------------------------------------------------------------------------
## package 'aod'
##------------------------------------------------------------------------------
`formula.glimML` <-
function(x, ...) x@formula
`family.glimML` <-
function(object, ...) switch(object@method,
"BB" = binomial(object@link),
#"NB" = MASS::negative.binomial(theta = 1/object@param['phi.(Intercept)'],
"NB" = get("negative.binomial", asNamespace("MASS"))(
theta = 1 / object@param['phi.(Intercept)'], link = object@link))
`terms.glimML` <-
function (x, ...) terms.formula(x@formula, ...)
`model.frame.glimML` <-
function (formula, ...)
model.frame(formula@formula, data = formula@data, na.action = formula@na.action)
##------------------------------------------------------------------------------
## package 'aod3'
##------------------------------------------------------------------------------
model.matrix.aodml <-
function (object, ...) object$X.b
`model.frame.aodml` <-
function (formula, ...)
model.frame(formula$formula, data = formula$dat)
##------------------------------------------------------------------------------
## package 'geepack'
##------------------------------------------------------------------------------
`coef.geese` <-
function (object, ...) object$beta
## What if 'data' changed in the meantime?
# model.matrix.gee <-
# function (object, ...) {
# cl <- get_call(fgee)
# cl[[1L]] <- as.name("model.matrix")
# cl$object <- cl$formula
# cl$id <- cl$corstr <- cl$formula <- NULL
# eval.parent(cl)
# }
##------------------------------------------------------------------------------
## package 'yags'
##------------------------------------------------------------------------------
`coef.yagsResult` <-
function (object, ...)
structure(object@coefficients, names = object@varnames)
`getCall.yagsResult` <-
function(x, ...) x@Call
`formula.yagsResult` <-
function (x, ...)
eval.parent(x@Call$formula)
##------------------------------------------------------------------------------
## package 'MCMCglmm'
##------------------------------------------------------------------------------
`formula.MCMCglmm` <-
function (x, ...) x$Fixed$formula
`family.MCMCglmm` <-
function (object, ...) object$family
##------------------------------------------------------------------------------
## package 'caper'
##------------------------------------------------------------------------------
`formula.caic` <-
function(x, ...) formula(x$mod)
##------------------------------------------------------------------------------
## package 'asreml'
##------------------------------------------------------------------------------
#XXX: this is for fixed effects only (should sparse be included too?)
`formula.asreml` <-
function (x, ...) as.formula(x$fixed.formula)
`family.asreml` <-
function(object, ...) {
fam <- object$family
fam$linkfun <- fam$link
fam$link <- fam$family[2L]
fam$family <- fam$family[1L]
fam$linkinv <- fam$inverse
fam$inverse <- NULL
class(fam) <- "family"
fam
}
##------------------------------------------------------------------------------
## package 'maxlike'
##------------------------------------------------------------------------------
formula.maxlikeFit <-
function (x, ...)
as.formula(get_call(x)$formula, env = parent.frame())
##------------------------------------------------------------------------------
## package 'geeM'
##------------------------------------------------------------------------------
model.matrix.geem <-
function (object, ...)
object$X
## EOF
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.