Nothing
# replacement for stats:::logLik.logLik
logLik.logLik <-
function (object, ...) {
if (!missing(...)) warning("extra arguments discarded")
object
}
`logLik.glmmML` <-
function(object, ...) {
ret <- -object$deviance / 2
#ret <- df - object$aic / 2
n <- length(object$coefficients)
attr(ret, "df") <- n + object$cluster.null.df - object$df.residual
attr(ret, "nobs") <- n + object$cluster.null.df
class(ret) <- "logLik"
return(ret)
}
`logLik.glmmboot` <-
function (object, ...) {
ret <- object$logLik
attr(ret, "nobs") <- object$n
attr(ret, "df") <- object$n - object$df.residual
class(ret) <- "logLik"
return(ret)
}
`logLik.lmekin` <-
function(object, ...) {
ret <- object$loglik
attr(ret, "nobs") <- object$n
attr(ret, "df") <- length(object$coefficients$fixed) +
length(object$coefficients$random) + 1L
class(ret) <- "logLik"
ret
}
`logLik.unmarkedFit` <-
function(object, ...) {
ret <- -object@negLogLike
attr(ret, "df") <- length(object@opt$par)
attr(ret, "nobs") <- #get("sampleSize", asNamespace("unmarked"))(object)
unmarked::sampleSize(object)
class(ret) <- "logLik"
return(ret)
}
`logLik.splm` <-
function (object, ...) {
ret <- object$logLik
#if(is.null(ret)) return(NA)
if(is.null(ret)) ret <- NA_real_
attr(ret, "nobs") <- length(resid(object))
attr(ret, "df") <- length(object$coefficients) + length(object$errcomp) +
length(object$arcoef) + 1L
class(ret) <- "logLik"
ret
}
`logLik.MCMCglmm` <-
function (object, ...)
structure(-0.5 * mean(object$Deviance), df = sum(object$Fixed$nfl, object$Random$nfl,
object$Residual$nfl), nobs = object$Residual$nrl,
class = "logLik")
`logLik.gamm` <-
function (object, ...)
logLik(object[[if(is.null(object$lme)) "mer" else "lme"]], ...)
`logLik.mark` <-
function (object, adjust = TRUE, ...) {
res <- -0.5 * object$results$lnl
attr(res, "df") <- object$results[[if(!adjust && !is.null(object$results$npar.unadjusted))
'npar.unadjusted' else 'npar']]
attr(res, "nobs") <- object$results$n
class(res) <- "logLik"
res
}
`logLik.logistf` <-
function (object, ...) {
res <- object$loglik[2L]
attr(res, "nobs") <- object$n
attr(res, "df") <- object$df + 1L
class(res) <- "logLik"
res
}
`logLik.asreml` <-
function (object, ...) {
res <- object$loglik
## 'df' here is the number of fixed effect coefficients + number of variance
## parameters (non-fixed and non-constained). This gives comparable numbers
## to respective lmer models. Note however that 'Asreml-R manual' only the
## number of variance components is used as K for AIC calculation (page 15).
## Also logLik values are far different from those from lmer(REML = TRUE),
## even though coefficients are very similar.
mon <- object$monitor
attr(res, "nobs") <- nobs <- length(resid(object))
attr(res, "df") <-
(nobs - object$nedf) +
sum(!is.na(mon$constraint) & !(mon$constraint %in% c("Fixed", "Constrained")))
# sum(!(summ$varcomp$constraint %in% c("Fixed", "Constrained")))
class(res) <- "logLik"
res
}
`logLik.phylolm` <-
function (object, ...) {
res <- object$logLik
attr(res, "df") <- object$p
attr(res, "nobs") <- object$n
class(res) <- "logLik"
res
}
`logLik.cplm` <-
## based on stats:::logLik.glm
function (object, ...) {
if (!missing(...)) warning("extra arguments discarded")
n <- sum(!is.na(resid(object)))
p <- n - object@df.residual
val <- p - object@aic / 2
attr(val, "nobs") <- sum(!is.na(resid(object)))
attr(val, "df") <- p
class(val) <- "logLik"
val
}
logLik.maxlikeFit <-
function (object, ...) {
ll <- -object$optim$value
attr(ll, "nobs") <- nrow(object[['points.retained']])
attr(ll, "df") <- nrow(object$Est)
class(ll) <- "logLik"
ll
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.