R/methods-logLik.R

Defines functions `logLik.unmarkedFit` `logLik.lmekin` `logLik.glmmML`

# replacement for stats:::logLik.logLik
logLik.logLik <- 
function (object, ...) {
	if (!missing(...))  warning("extra arguments discarded")
	object
}

`logLik.glmmML` <- 
function(object, ...) {
	ret <- -object$deviance / 2
	#ret <- df  - object$aic / 2
	n <- length(object$coefficients)
	attr(ret, "df") <- n + object$cluster.null.df - object$df.residual
	attr(ret, "nobs") <- n + object$cluster.null.df
	class(ret) <- "logLik"
	return(ret)
}

`logLik.glmmboot` <- 
function (object, ...) {
	ret <- object$logLik
	attr(ret, "nobs") <- object$n
	attr(ret, "df") <- object$n - object$df.residual
	class(ret) <- "logLik"
	return(ret)
}

`logLik.lmekin` <-
function(object, ...) {
	ret <- object$loglik
	attr(ret, "nobs") <- object$n
	attr(ret, "df") <- length(object$coefficients$fixed) +
		length(object$coefficients$random) + 1L
	class(ret) <- "logLik"
	ret
}

`logLik.unmarkedFit` <- 
function(object, ...) {
	ret <- -object@negLogLike
	attr(ret, "df") <- length(object@opt$par)
	attr(ret, "nobs") <- #get("sampleSize", asNamespace("unmarked"))(object)
			unmarked::sampleSize(object)
	class(ret) <- "logLik"
	return(ret)
}

`logLik.splm` <- 
function (object, ...) {
	ret <- object$logLik
	#if(is.null(ret)) return(NA)
	if(is.null(ret)) ret <- NA_real_
	attr(ret, "nobs") <- length(resid(object))
	attr(ret, "df") <- length(object$coefficients) + length(object$errcomp) +
		length(object$arcoef) + 1L
	class(ret) <- "logLik"
	ret
}

`logLik.MCMCglmm` <-
function (object, ...)
	structure(-0.5 * mean(object$Deviance), df = sum(object$Fixed$nfl, object$Random$nfl,
		object$Residual$nfl), nobs = object$Residual$nrl, 
		class = "logLik")


`logLik.gamm` <-
function (object, ...)
	logLik(object[[if(is.null(object$lme)) "mer" else "lme"]], ...)

	
`logLik.mark` <- 
function (object, adjust = TRUE, ...) {
	res <- -0.5 * object$results$lnl
	attr(res, "df") <- object$results[[if(!adjust && !is.null(object$results$npar.unadjusted))
		'npar.unadjusted' else 'npar']]
	attr(res, "nobs") <- object$results$n 
	class(res) <- "logLik"
	res
}

`logLik.logistf` <- 
function (object, ...) {
	res <- object$loglik[2L]
	attr(res, "nobs") <- object$n
	attr(res, "df") <- object$df + 1L
	class(res) <- "logLik"
	res
}

`logLik.asreml` <- 
function (object, ...) {
	res <- object$loglik
	## 'df' here is the number of fixed effect coefficients + number of variance
	## parameters (non-fixed and non-constained). This gives comparable numbers
	## to respective lmer models. Note however that 'Asreml-R manual' only the
	## number of variance components is used as K for AIC calculation (page 15).
	## Also logLik values are far different from those from lmer(REML = TRUE),
	## even though coefficients are very similar.
	mon <- object$monitor
	attr(res, "nobs") <- nobs <- length(resid(object))
	attr(res, "df") <-
		(nobs - object$nedf) +
		sum(!is.na(mon$constraint) & !(mon$constraint %in% c("Fixed", "Constrained")))
		# sum(!(summ$varcomp$constraint %in% c("Fixed", "Constrained")))
	class(res) <- "logLik"
	res
}


`logLik.phylolm` <-
function (object, ...) {
	res <- object$logLik
	attr(res, "df") <-  object$p
	attr(res, "nobs") <-  object$n
	class(res) <- "logLik"
	res
}

`logLik.cplm` <-
## based on stats:::logLik.glm
function (object, ...) {
	if (!missing(...)) warning("extra arguments discarded")
    n <- sum(!is.na(resid(object)))
	p <- n - object@df.residual
	val <- p - object@aic / 2
    attr(val, "nobs") <- sum(!is.na(resid(object)))
    attr(val, "df") <- p
    class(val) <- "logLik"
    val
}

logLik.maxlikeFit <-
function (object, ...) {
	ll <- -object$optim$value
	attr(ll, "nobs") <- nrow(object[['points.retained']])
	attr(ll, "df") <- nrow(object$Est)
	class(ll) <- "logLik"
	ll
}

Try the MuMIn package in your browser

Any scripts or data that you put into this service are public.

MuMIn documentation built on June 22, 2024, 6:44 p.m.