Nothing
sidesplit <- function(x){
xms <- x$measure
MY <- max(x$y,na.rm=TRUE) - min(x$y,na.rm=TRUE)
if(xms=="OR"||xms=="RR"||xms=="RD"||xms=="HR"){
study <- x$study
treat <- x$treat
d <- x$d
n <- x$n
study <- as.numeric(factor(study))
data1 <- data.frame(study,treat,d,n)
####
vmat <- function(q2, p){
i1 <- 1; i2 <- p
Sg <- matrix(numeric(p*p),p,p)
for(i in 1:p){
Sg[i,(i:p)] <- q2[i1:i2]
i1 <- i2 + 1
i2 <- i2 + p - i
}
Sg <- Sg + t(Sg); diag(Sg) <- diag(Sg)/2
return(Sg)
}
cmat <- function(q2, p){
Sg <- q2*diag(p)
return(Sg)
}
pmat <- function(Si, wi){
pl <- length(wi)
R <- matrix(numeric(pl*pl),pl)
for(i in 1:pl){
for(j in 1:pl){
R[i,j] <- Si[wi[i],wi[j]]
}
}
return(R)
}
imat <- function(Si, wi, p){
pl <- length(wi)
R <- matrix(numeric(p*p),p)
for(i in 1:pl){
for(j in 1:pl){
R[wi[i],wi[j]] <- Si[i,j]
}
}
return(R)
}
ivec <- function(yi, wi, p){
pl <- length(wi)
R <- numeric(p)
for(i in 1:pl) R[wi[i]] <- yi[i]
return(R)
}
ivec2 <- function(yi, wi, p){
pl <- length(wi)
R <- rep(NA,times=p)
for(i in 1:pl) R[wi[i]] <- yi[i]
return(R)
}
gmat <- function(g1,g2,p){
G <- diag(0, p) + g2
diag(G) <- g1
return(G)
}
QT <- function(x,x0){
x1 <- sort(c(x,x0))
w1 <- which(x1==as.numeric(x0))
qt <- 1 - w1/(length(x)+1)
return(qt)
}
####
REMLSS <- function(y,S,X1,maxitr=50){
N <- dim(y)[1]
p <- dim(y)[2]
Q <- 0
for(i in 1:p) Q <- Q + dim(X1[[i]])[1]
Qp <- numeric(p)
for(i in 1:p) Qp[i] <- dim(X1[[i]])[1]
Qc2 <- cumsum(Qp)
Qc1 <- c(1,(Qc2[1:p-1]+1))
L1 <- Qc2 - Qc1 + 1
mu <- rnorm(Q) # initial values
g1 <- 0.2
g2 <- 0.1
Qc0 <- c(mu,g1,g2)
LL1 <- function(g){
#G <- gmat(g,g2,p)
G <- gmat(g,(g/2),p)
ll1 <- 0
for(i in 1:N){
yi <- as.vector(y[i,])
wi <- which(is.na(yi)==FALSE)
pl <- length(wi)
Si <- vmat(S[i,], p)
yi <- yi[wi]
Si <- pmat(Si,wi)
Gi <- pmat(G,wi)
mui <- rep(NA,times=pl)
for(k in 1:pl){
j <- wi[k]
qj <- Qc1[j]:Qc2[j]
muj <- mu[qj]
xj <- X1[[j]][,i]
mui[k] <- muj%*%xj
}
B1 <- (yi - mui)
B2 <- ginv2(Gi + Si)
A1 <- log(det(Gi + Si))
A2 <- t(B1) %*% B2 %*% B1
# A3 <- pl * log(2*pi)
ll1 <- ll1 + A1 + A2 # + A3
}
A1 <- numeric(Q)
A2 <- matrix(numeric(Q*Q),Q)
for(i in 1:N){
yi <- as.vector(y[i,])
wi <- which(is.na(yi)==FALSE)
pl <- length(wi)
Si <- vmat(S[i,], p)
yi <- yi[wi]
Si <- pmat(Si,wi)
Gi <- pmat(G,wi)
Wi <- ginv2(Gi + Si)
Xj <- NULL
for(k in 1:pl){
j <- wi[k]
if(k==1){
xj <- matrix(X1[[j]][,i])
Xj <- xj
}
if(k>=2){
xj <- matrix(X1[[j]][,i])
dimj <- dim(Xj)
qj <- length(xj)
B1 <- matrix(numeric(dimj[2]*qj),qj)
B2 <- matrix(numeric(dimj[1]))
B3 <- rbind(Xj,B1)
B4 <- rbind(B2,xj)
Xj <- cbind(B3,B4)
}
}
a1 <- t(yi) %*% Wi %*% t(Xj)
a2 <- Xj %*% Wi %*% t(Xj)
L2 <- L1[wi]
if(pl==1){
j <- wi
A2[Qc1[j]:Qc2[j],Qc1[j]:Qc2[j]] <- A2[Qc1[j]:Qc2[j],Qc1[j]:Qc2[j]] + a2
}
if(pl>=2){
L3 <- cumsum(L2)
L4 <- c(1,(L3[1:(pl-1)]+1))
for(k in 1:pl){
for(h in 1:pl){
j1 <- wi[k]
j2 <- wi[h]
wj1 <- Qc1[j1]:Qc2[j1]
wj2 <- Qc1[j2]:Qc2[j2]
uj1 <- L4[k]:L3[k]
uj2 <- L4[h]:L3[h]
A2[wj1,wj2] <- A2[wj1,wj2] + a2[uj1,uj2]
}
}
}
for(k in 1:pl){
j <- wi[k]
Lk <- L1[j]
A1[Qc1[j]:Qc2[j]] <- A1[Qc1[j]:Qc2[j]] + a1[1:Lk]
dim2 <- length(a1)
if(k!=pl){
a1 <- a1[(Lk+1):dim2]
}
}
}
ll1 <- ll1 + log(det(A2))
return(ll1)
}
for(itr in 1:maxitr){
A1 <- numeric(Q)
A2 <- matrix(numeric(Q*Q),Q)
G <- gmat(g1,g2,p)
for(i in 1:N){
yi <- as.vector(y[i,])
wi <- which(is.na(yi)==FALSE)
pl <- length(wi)
Si <- vmat(S[i,], p)
yi <- yi[wi]
Si <- pmat(Si,wi)
Gi <- pmat(G,wi)
Wi <- ginv2(Gi + Si)
Xj <- NULL
for(k in 1:pl){
j <- wi[k]
if(k==1){
xj <- matrix(X1[[j]][,i])
Xj <- xj
}
if(k>=2){
xj <- matrix(X1[[j]][,i])
dimj <- dim(Xj)
qj <- length(xj)
B1 <- matrix(numeric(dimj[2]*qj),qj)
B2 <- matrix(numeric(dimj[1]))
B3 <- rbind(Xj,B1)
B4 <- rbind(B2,xj)
Xj <- cbind(B3,B4)
}
}
a1 <- t(yi) %*% Wi %*% t(Xj)
a2 <- Xj %*% Wi %*% t(Xj)
L2 <- L1[wi]
if(pl==1){
j <- wi
A2[Qc1[j]:Qc2[j],Qc1[j]:Qc2[j]] <- A2[Qc1[j]:Qc2[j],Qc1[j]:Qc2[j]] + a2
}
if(pl>=2){
L3 <- cumsum(L2)
L4 <- c(1,(L3[1:(pl-1)]+1))
for(k in 1:pl){
for(h in 1:pl){
j1 <- wi[k]
j2 <- wi[h]
wj1 <- Qc1[j1]:Qc2[j1]
wj2 <- Qc1[j2]:Qc2[j2]
uj1 <- L4[k]:L3[k]
uj2 <- L4[h]:L3[h]
A2[wj1,wj2] <- A2[wj1,wj2] + a2[uj1,uj2]
}
}
}
for(k in 1:pl){
j <- wi[k]
Lk <- L1[j]
A1[Qc1[j]:Qc2[j]] <- A1[Qc1[j]:Qc2[j]] + a1[1:Lk]
dim2 <- length(a1)
if(k!=pl){
a1 <- a1[(Lk+1):dim2]
}
}
}
if(det(A2)>0){
mu <- A1 %*% ginv2(A2)
g1 <- optimize(LL1, lower = 0, upper = MY)$minimum
g2 <- 0.5*g1
V.mu <- ginv2(A2)
Qc <- c(mu,g1,g2)
rb <- abs(Qc - Qc0)/abs(Qc0); rb[is.nan(rb)] <- 0
if(max(rb) < 10^-4) break
Qc0 <- Qc
}
if(det(A2)<=0) break
}
if(det(A2)>0){
SE <- sqrt(diag(V.mu))
R1 <- as.vector(mu)
R2 <- as.vector(SE)
R3 <- as.vector(mu - qnorm(.975)*SE)
R4 <- as.vector(mu + qnorm(.975)*SE)
P4 <- 2*(1-pnorm(abs(R1)/R2))
R5 <- cbind(R1,R2,R3,R4,P4); colnames(R5) <- c("Coef.","SE","95%CL","95%CU","P-value")
rname <- NULL
for(i in 1:p) rname <- c(rname,rownames(X1[[i]]))
kp <- which(rname=="i.direct")
kq <- which(rname=="i.indirect")
R6 <- R5[kp,]
R7 <- R5[kq,]
r1 <- R6[1] - R7[1]
r2 <- sqrt(R6[2]^2 + R7[2]^2)
r3 <- r1 - qnorm(.975)*r2
r4 <- r1 + qnorm(.975)*r2
r5 <- 2*(1-pnorm(abs(r1)/r2))
R8 <- data.frame(r1,r2,r3,r4,r5)
colnames(R8) <- c("Coef.","SE","95%CL","95%CU","P-value")
R9 <- list("Direct evidence"=R6,"Indirect evidence"=R7,"Difference"=R8)
return(R9)
}
if(det(A2)<=0){
R6 <- R7 <- R8 <- t(data.frame(c(NA,NA,NA,NA,NA)))
colnames(R6) <- colnames(R7) <- colnames(R8) <- c("Coef.","SE","95%CL","95%CU","P-value")
rownames(R6) <- rownames(R7) <- rownames(R8) <- NULL
R9 <- list("Direct evidence"=R6,"Indirect evidence"=R7,"Difference"=R8)
return(R9)
}
}
####
treat1 <- sort(unique(treat))
N <- length(unique(study))
p <- max(treat)
q <- p - 1
des <- n.arm <- numeric(N)
Ti <- NULL
for(i in 1:N){
wi <- which(study==i)
ti <- sort(treat[wi],decreasing=FALSE)
Ti[[i]] <- ti
di <- ti[1]
for(j in 2:length(wi)) di <- paste0(di,"-",ti[j])
des[i] <- di
n.arm[i] <- length(wi)
}
des0 <- sort(unique(des))
R1 <- R2 <- R3 <- rname <- NULL
for(k in 1:(p-1)){
T2 <- ttrt(treat, ref=k)
treat2 <- T2$code
data2 <- data.frame(study,treat2,d,n)
edat <- setup(study=study,trt=treat2,d=d,n=n,measure=xms,ref=1,data=data2)
#edat <- data.edit(study,treat2,d,n,data=data2)
y1 <- edat$y
S1 <- edat$S
for(h in (k+1):p){
w.pair <- NULL
for(i in 1:N){
tri <- Ti[[i]]
if( (sum(tri==k) + sum(tri==h))==2 ) w.pair <- c(w.pair,i)
}
i.pair <- rep(FALSE,times=N)
i.pair[w.pair] <- TRUE
i.direct <- numeric(N); i.direct[w.pair] <- 1
i.indirect <- numeric(N) + 1; i.indirect[w.pair] <- 0
if(sum(i.pair)>=1){
X1 <- NULL
Q1 <- setdiff(1:q,(h-1))
for(i in Q1) X1[[i]] <- t(matrix(numeric(N) + 1))
for(i in Q1) rownames(X1[[i]]) <- paste0(i+1,": cons")
X1[[h-1]] <- rbind(i.direct,i.indirect)
wm <- which((i.pair)&(n.arm>=3))
wd <- des[wm]
uwd <- unique(wd)
if(length(wm)>=1){
for(l in 1:length(uwd)){
des.l <- uwd[l]
i.arm <- as.numeric(strsplit(des.l,"-")[[1]])
wl <- setdiff(i.arm,c(k,h))
for(a in wl){
ww <- setdiff(which(str_detect(des, pattern=paste(a))),which(str_detect(des,pattern=des.l)))
if(length(ww)>=1){
i.adj <- numeric(N)
i.adj[des==des.l] <- 1
if(a>k) X1[[a-1]] <- rbind(X1[[a-1]] ,i.adj)
if(a<k) X1[[a]] <- rbind(X1[[a]] ,i.adj)
}
}
}
}
R0 <- REMLSS(y1,S1,X1)
R1 <- rbind(R1,R0[[1]])
R2 <- rbind(R2,R0[[2]])
R3 <- rbind(R3,R0[[3]])
rname <- c(rname,paste0(k," vs. ",h))
# message(paste0("The sidesplitting computation for the treatment pair ",pair," is completed."))
}
}
}
if(is.null(rname)==FALSE){
# rname <- paste0("pair: ",rname)
rownames(R1) <- rname
rownames(R2) <- rname
rownames(R3) <- rname
if(sum(is.na(R3[,1]))>=1){
R5 <- "For the NA components, the corresponding estimates were not calculable because of singularity issues (possibly, all the evidence about these contrasts comes from the studies which directly compare them)."
R4 <- list("coding"=x$coding,"reference"=x$reference,"Direct evidence"=R1,"Indirect evidence"=R2,"Difference"=R3,"Warning"=R5)
}
if(sum(is.na(R3[,1]))==0){
R4 <- list("coding"=x$coding,"reference"=x$reference,"Direct evidence"=R1,"Indirect evidence"=R2,"Difference"=R3)
}
return(R4)
}
if(is.null(rname)){
R9 <- "There are no corresponding pairs that can be analyzed on the network."
return(R9)
}
}
if(xms=="MD"||xms=="SMD"){
study <- x$study
treat <- x$treat
m <- x$m
s <- x$s
n <- x$n
study <- as.numeric(factor(study))
data1 <- data.frame(study,treat,m,s,n)
####
vmat <- function(q2, p){
i1 <- 1; i2 <- p
Sg <- matrix(numeric(p*p),p,p)
for(i in 1:p){
Sg[i,(i:p)] <- q2[i1:i2]
i1 <- i2 + 1
i2 <- i2 + p - i
}
Sg <- Sg + t(Sg); diag(Sg) <- diag(Sg)/2
return(Sg)
}
cmat <- function(q2, p){
Sg <- q2*diag(p)
return(Sg)
}
pmat <- function(Si, wi){
pl <- length(wi)
R <- matrix(numeric(pl*pl),pl)
for(i in 1:pl){
for(j in 1:pl){
R[i,j] <- Si[wi[i],wi[j]]
}
}
return(R)
}
imat <- function(Si, wi, p){
pl <- length(wi)
R <- matrix(numeric(p*p),p)
for(i in 1:pl){
for(j in 1:pl){
R[wi[i],wi[j]] <- Si[i,j]
}
}
return(R)
}
ivec <- function(yi, wi, p){
pl <- length(wi)
R <- numeric(p)
for(i in 1:pl) R[wi[i]] <- yi[i]
return(R)
}
ivec2 <- function(yi, wi, p){
pl <- length(wi)
R <- rep(NA,times=p)
for(i in 1:pl) R[wi[i]] <- yi[i]
return(R)
}
gmat <- function(g1,g2,p){
G <- diag(0, p) + g2
diag(G) <- g1
return(G)
}
QT <- function(x,x0){
x1 <- sort(c(x,x0))
w1 <- which(x1==as.numeric(x0))
qt <- 1 - w1/(length(x)+1)
return(qt)
}
####
REMLSS <- function(y,S,X1,maxitr=50){
N <- dim(y)[1]
p <- dim(y)[2]
Q <- 0
for(i in 1:p) Q <- Q + dim(X1[[i]])[1]
Qp <- numeric(p)
for(i in 1:p) Qp[i] <- dim(X1[[i]])[1]
Qc2 <- cumsum(Qp)
Qc1 <- c(1,(Qc2[1:p-1]+1))
L1 <- Qc2 - Qc1 + 1
mu <- rnorm(Q) # initial values
g1 <- 0.2
g2 <- 0.1
Qc0 <- c(mu,g1,g2)
LL1 <- function(g){
#G <- gmat(g,g2,p)
G <- gmat(g,(g/2),p)
ll1 <- 0
for(i in 1:N){
yi <- as.vector(y[i,])
wi <- which(is.na(yi)==FALSE)
pl <- length(wi)
Si <- vmat(S[i,], p)
yi <- yi[wi]
Si <- pmat(Si,wi)
Gi <- pmat(G,wi)
mui <- rep(NA,times=pl)
for(k in 1:pl){
j <- wi[k]
qj <- Qc1[j]:Qc2[j]
muj <- mu[qj]
xj <- X1[[j]][,i]
mui[k] <- muj%*%xj
}
B1 <- (yi - mui)
B2 <- ginv2(Gi + Si)
A1 <- log(det(Gi + Si))
A2 <- t(B1) %*% B2 %*% B1
# A3 <- pl * log(2*pi)
ll1 <- ll1 + A1 + A2 # + A3
}
A1 <- numeric(Q)
A2 <- matrix(numeric(Q*Q),Q)
for(i in 1:N){
yi <- as.vector(y[i,])
wi <- which(is.na(yi)==FALSE)
pl <- length(wi)
Si <- vmat(S[i,], p)
yi <- yi[wi]
Si <- pmat(Si,wi)
Gi <- pmat(G,wi)
Wi <- ginv2(Gi + Si)
Xj <- NULL
for(k in 1:pl){
j <- wi[k]
if(k==1){
xj <- matrix(X1[[j]][,i])
Xj <- xj
}
if(k>=2){
xj <- matrix(X1[[j]][,i])
dimj <- dim(Xj)
qj <- length(xj)
B1 <- matrix(numeric(dimj[2]*qj),qj)
B2 <- matrix(numeric(dimj[1]))
B3 <- rbind(Xj,B1)
B4 <- rbind(B2,xj)
Xj <- cbind(B3,B4)
}
}
a1 <- t(yi) %*% Wi %*% t(Xj)
a2 <- Xj %*% Wi %*% t(Xj)
L2 <- L1[wi]
if(pl==1){
j <- wi
A2[Qc1[j]:Qc2[j],Qc1[j]:Qc2[j]] <- A2[Qc1[j]:Qc2[j],Qc1[j]:Qc2[j]] + a2
}
if(pl>=2){
L3 <- cumsum(L2)
L4 <- c(1,(L3[1:(pl-1)]+1))
for(k in 1:pl){
for(h in 1:pl){
j1 <- wi[k]
j2 <- wi[h]
wj1 <- Qc1[j1]:Qc2[j1]
wj2 <- Qc1[j2]:Qc2[j2]
uj1 <- L4[k]:L3[k]
uj2 <- L4[h]:L3[h]
A2[wj1,wj2] <- A2[wj1,wj2] + a2[uj1,uj2]
}
}
}
for(k in 1:pl){
j <- wi[k]
Lk <- L1[j]
A1[Qc1[j]:Qc2[j]] <- A1[Qc1[j]:Qc2[j]] + a1[1:Lk]
dim2 <- length(a1)
if(k!=pl){
a1 <- a1[(Lk+1):dim2]
}
}
}
ll1 <- ll1 + log(det(A2))
return(ll1)
}
for(itr in 1:maxitr){
A1 <- numeric(Q)
A2 <- matrix(numeric(Q*Q),Q)
G <- gmat(g1,g2,p)
for(i in 1:N){
yi <- as.vector(y[i,])
wi <- which(is.na(yi)==FALSE)
pl <- length(wi)
Si <- vmat(S[i,], p)
yi <- yi[wi]
Si <- pmat(Si,wi)
Gi <- pmat(G,wi)
Wi <- ginv2(Gi + Si)
Xj <- NULL
for(k in 1:pl){
j <- wi[k]
if(k==1){
xj <- matrix(X1[[j]][,i])
Xj <- xj
}
if(k>=2){
xj <- matrix(X1[[j]][,i])
dimj <- dim(Xj)
qj <- length(xj)
B1 <- matrix(numeric(dimj[2]*qj),qj)
B2 <- matrix(numeric(dimj[1]))
B3 <- rbind(Xj,B1)
B4 <- rbind(B2,xj)
Xj <- cbind(B3,B4)
}
}
a1 <- t(yi) %*% Wi %*% t(Xj)
a2 <- Xj %*% Wi %*% t(Xj)
L2 <- L1[wi]
if(pl==1){
j <- wi
A2[Qc1[j]:Qc2[j],Qc1[j]:Qc2[j]] <- A2[Qc1[j]:Qc2[j],Qc1[j]:Qc2[j]] + a2
}
if(pl>=2){
L3 <- cumsum(L2)
L4 <- c(1,(L3[1:(pl-1)]+1))
for(k in 1:pl){
for(h in 1:pl){
j1 <- wi[k]
j2 <- wi[h]
wj1 <- Qc1[j1]:Qc2[j1]
wj2 <- Qc1[j2]:Qc2[j2]
uj1 <- L4[k]:L3[k]
uj2 <- L4[h]:L3[h]
A2[wj1,wj2] <- A2[wj1,wj2] + a2[uj1,uj2]
}
}
}
for(k in 1:pl){
j <- wi[k]
Lk <- L1[j]
A1[Qc1[j]:Qc2[j]] <- A1[Qc1[j]:Qc2[j]] + a1[1:Lk]
dim2 <- length(a1)
if(k!=pl){
a1 <- a1[(Lk+1):dim2]
}
}
}
if(det(A2)>0){
mu <- A1 %*% ginv2(A2)
g1 <- optimize(LL1, lower = 0, upper = MY)$minimum
g2 <- 0.5*g1
V.mu <- ginv2(A2)
Qc <- c(mu,g1,g2)
rb <- abs(Qc - Qc0)/abs(Qc0); rb[is.nan(rb)] <- 0
if(max(rb) < 10^-4) break
Qc0 <- Qc
}
if(det(A2)<=0) break
}
if(det(A2)>0){
SE <- sqrt(diag(V.mu))
R1 <- as.vector(mu)
R2 <- as.vector(SE)
R3 <- as.vector(mu - qnorm(.975)*SE)
R4 <- as.vector(mu + qnorm(.975)*SE)
P4 <- 2*(1-pnorm(abs(R1)/R2))
R5 <- cbind(R1,R2,R3,R4,P4); colnames(R5) <- c("Coef.","SE","95%CL","95%CU","P-value")
rname <- NULL
for(i in 1:p) rname <- c(rname,rownames(X1[[i]]))
kp <- which(rname=="i.direct")
kq <- which(rname=="i.indirect")
R6 <- R5[kp,]
R7 <- R5[kq,]
r1 <- R6[1] - R7[1]
r2 <- sqrt(R6[2]^2 + R7[2]^2)
r3 <- r1 - qnorm(.975)*r2
r4 <- r1 + qnorm(.975)*r2
r5 <- 2*(1-pnorm(abs(r1)/r2))
R8 <- data.frame(r1,r2,r3,r4,r5)
colnames(R8) <- c("Coef.","SE","95%CL","95%CU","P-value")
R9 <- list("Direct evidence"=R6,"Indirect evidence"=R7,"Difference"=R8)
return(R9)
}
if(det(A2)<=0){
R6 <- R7 <- R8 <- t(data.frame(c(NA,NA,NA,NA,NA)))
colnames(R6) <- colnames(R7) <- colnames(R8) <- c("Coef.","SE","95%CL","95%CU","P-value")
rownames(R6) <- rownames(R7) <- rownames(R8) <- NULL
R9 <- list("Direct evidence"=R6,"Indirect evidence"=R7,"Difference"=R8)
return(R9)
}
}
####
treat1 <- sort(unique(treat))
N <- length(unique(study))
p <- max(treat)
q <- p - 1
des <- n.arm <- numeric(N)
Ti <- NULL
for(i in 1:N){
wi <- which(study==i)
ti <- sort(treat[wi],decreasing=FALSE)
Ti[[i]] <- ti
di <- ti[1]
for(j in 2:length(wi)) di <- paste0(di,"-",ti[j])
des[i] <- di
n.arm[i] <- length(wi)
}
des0 <- sort(unique(des))
R1 <- R2 <- R3 <- rname <- NULL
for(k in 1:(p-1)){
T2 <- ttrt(treat, ref=k)
treat2 <- T2$code
data2 <- data.frame(study,treat2,m,s,n)
edat <- setup(study=study,trt=treat2,m=m,s=s,n=n,measure=xms,ref=1,data=data2)
#edat <- data.edit(study,treat2,d,n,data=data2)
y1 <- edat$y
S1 <- edat$S
for(h in (k+1):p){
w.pair <- NULL
for(i in 1:N){
tri <- Ti[[i]]
if( (sum(tri==k) + sum(tri==h))==2 ) w.pair <- c(w.pair,i)
}
i.pair <- rep(FALSE,times=N)
i.pair[w.pair] <- TRUE
i.direct <- numeric(N); i.direct[w.pair] <- 1
i.indirect <- numeric(N) + 1; i.indirect[w.pair] <- 0
if(sum(i.pair)>=1){
X1 <- NULL
Q1 <- setdiff(1:q,(h-1))
for(i in Q1) X1[[i]] <- t(matrix(numeric(N) + 1))
for(i in Q1) rownames(X1[[i]]) <- paste0(i+1,": cons")
X1[[h-1]] <- rbind(i.direct,i.indirect)
wm <- which((i.pair)&(n.arm>=3))
wd <- des[wm]
uwd <- unique(wd)
if(length(wm)>=1){
for(l in 1:length(uwd)){
des.l <- uwd[l]
i.arm <- as.numeric(strsplit(des.l,"-")[[1]])
wl <- setdiff(i.arm,c(k,h))
for(a in wl){
ww <- setdiff(which(str_detect(des, pattern=paste(a))),which(str_detect(des,pattern=des.l)))
if(length(ww)>=1){
i.adj <- numeric(N)
i.adj[des==des.l] <- 1
if(a>k) X1[[a-1]] <- rbind(X1[[a-1]] ,i.adj)
if(a<k) X1[[a]] <- rbind(X1[[a]] ,i.adj)
}
}
}
}
R0 <- REMLSS(y1,S1,X1)
R1 <- rbind(R1,R0[[1]])
R2 <- rbind(R2,R0[[2]])
R3 <- rbind(R3,R0[[3]])
rname <- c(rname,paste0(k," vs. ",h))
# message(paste0("The sidesplitting computation for the treatment pair ",pair," is completed."))
}
}
}
if(is.null(rname)==FALSE){
# rname <- paste0("pair: ",rname)
rownames(R1) <- rname
rownames(R2) <- rname
rownames(R3) <- rname
if(sum(is.na(R3[,1]))>=1){
R5 <- "For the NA components, the corresponding estimates were not calculable because of singularity issues (possibly, all the evidence about these contrasts comes from the studies which directly compare them)."
R4 <- list("coding"=x$coding,"reference"=x$reference,"Direct evidence"=R1,"Indirect evidence"=R2,"Difference"=R3,"Warning"=R5)
}
if(sum(is.na(R3[,1]))==0){
R4 <- list("coding"=x$coding,"reference"=x$reference,"Direct evidence"=R1,"Indirect evidence"=R2,"Difference"=R3)
}
return(R4)
}
if(is.null(rname)){
R9 <- "There are no corresponding pairs that can be analyzed on the network."
return(R9)
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.