| nmfAlgorithm.SNMF_R | R Documentation | 
NMF algorithms proposed by Kim et al. (2007) that enforces sparsity constraint on the basis matrix (algorithm ‘SNMF/L’) or the mixture coefficient matrix (algorithm ‘SNMF/R’).
  nmfAlgorithm.SNMF_R(..., maxIter = 20000L, eta = -1,
    beta = 0.01, bi_conv = c(0, 10), eps_conv = 1e-04)
  nmfAlgorithm.SNMF_L(..., maxIter = 20000L, eta = -1,
    beta = 0.01, bi_conv = c(0, 10), eps_conv = 1e-04)
| maxIter | maximum number of iterations. | 
| eta | parameter to suppress/bound the L2-norm of
 If  | 
| beta | regularisation parameter for sparsity
control, which balances the trade-off between the
accuracy of the approximation and the sparseness of
 Larger beta generates higher sparseness on  | 
| bi_conv | parameter of the biclustering convergence
test. It must be a size 2 numeric vector
 
 Convergence checks are performed every 5 iterations. | 
| eps_conv | threshold for the KKT convergence test. | 
| ... | extra argument not used. | 
The algorithm ‘SNMF/R’ solves the following NMF
optimization problem on a given target matrix A of
dimension n \times p: 
  \begin{array}{ll} & \min_{W,H} \frac{1}{2} \left(|| A -
  WH ||_F^2 + \eta ||W||_F^2 + \beta (\sum_{j=1}^p
  ||H_{.j}||_1^2)\right)\\ s.t. & W\geq 0, H\geq 0
  \end{array} 
The algorithm ‘SNMF/L’ solves a similar problem on
the transposed target matrix A, where H and
W swap roles, i.e. with sparsity constraints
applied to W.
Kim H and Park H (2007). "Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis." _Bioinformatics (Oxford, England)_, *23*(12), pp. 1495-502. ISSN 1460-2059, <URL: http://dx.doi.org/10.1093/bioinformatics/btm134>, <URL: http://www.ncbi.nlm.nih.gov/pubmed/17483501>.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.