Nothing
#' EBLUP under nonstationary Fay-Herriot model for sample and non-sample area
#'
#' @description This function gives the EBLUP and the estimate of mean squared error (mse)
#' based on a nonstationary Fay-Herriot model for both sample and non-sample area.
#'
#' @param formula an object of class list of formula, describe the model to be fitted
#' @param vardir a vector of sampling variances of direct estimators for each small area
#' @param lat a vector of latitude for each small area
#' @param long a vector of longitude for each small area
#' @param indicator a vector indicating the sample and non-sample area
#' @param method type of fitting method, default is "REML" methods
#' @param MAXITER number of iterations allowed in the algorithm. Default is 100 iterations
#' @param PRECISION convergence tolerance limit for the Fisher-scoring algorithm. Default value is 1e-04
#' @param data a data frame comprising the variables named in formula, vardir, lat and long
#'
#' @return The function returns a list with the following objects:
#' \describe{
#' \item{eblup}{a vector with the values of the estimators for each sample area}
#' \item{eblup.out}{a vector with the values of the estimators for each non-sample area}
#' \item{mse}{a vector of the mean squared error estimates for each sample area}
#' \item{mse.out}{a vector of the mean squared error estimates for each non-sample area}
#' \item{sample}{a matrix consist of area code, eblup, mse, SE and CV for sample area}
#' \item{nonsample}{a matrix consist of area code, eblup, mse, SE and CV for non-sample area}
#' \item{fit}{a list containing the following objects:}
#' \itemize{
#' \item estcoef : a data frame with the estimated model coefficients in the first column (beta),their asymptotic standard errors in the second column (std.error), the t statistics in the third column (tvalue) and the p-values of the significance of each coefficient in last column (pvalue)
#' \item refvar : estimated random effects variance
#' \item spatialcorr : estimated spatial correlation parameter
#' \item randomeffect : a data frame with the values of the random effect estimators
#' \item goodness : goodness of fit statistics
#' }
#' }
#' @export eblupNSFH2
#'
#' @examples
#' # Load data set
#' data(paddy)
#' # Fit nonstationary Fay-Herriot model using sample and non-sample part of paddy data
#' result <- eblupNSFH2(y ~ x1+x2, var, latitude, longitude, indicator , "REML", 100, 1e-04,paddy)
#' result
eblupNSFH2 <- function (formula, vardir, lat, long, indicator, method = "REML", MAXITER,PRECISION, data) {
namevar <- deparse(substitute(vardir))
nameindic <- deparse(substitute(indicator))
namelat <- deparse(substitute(lat))
namelong <- deparse(substitute(long))
if (!missing(data)) {
formuladata <- model.frame(formula, na.action = na.omit,data)
X <- model.matrix(formula, data)
vardir <- data[, namevar]
lat <- data[, namelat]
long <- data[, namelong]
indicator <- data[, nameindic]
}
else {
formuladata <- model.frame(formula, na.action = na.omit)
X <- model.matrix(formula)
}
if (attr(attributes(formuladata)$terms, "response") == 1)
textformula <- paste(formula[2], formula[1], formula[3])
else textformula <- paste(formula[1], formula[2])
if (length(na.action(formuladata)) > 0)
stop("Argument formula=", textformula, " contains NA values.")
if (any(is.na(vardir)))
stop("Argument vardir=", namevar, " contains NA values.")
y <- formuladata[, 1]
m <- length(y)
y.sam <- y[indicator==1]
m.sam <- length(y.sam)
x.sam <- X[1:m.sam,]
x.out <- X[-(1:m.sam),]
direct <- y.sam
I<-diag(1,m.sam)
p<-dim(x.sam)[2]
distance<-matrix(0,m,m)
distance<-as.matrix(dist(cbind(as.vector(lat),as.vector(long))))
W <- 1/(1+distance)
W.sam <- W[1:m.sam,1:m.sam]
par.stim <- matrix(0, 2, 1)
stime.fin <- matrix(0, 2, 1)
s <- matrix(0, 2, 1)
Idev <- matrix(0, 2, 2)
sigma2.u.stim.S <- 0
lamda.stim.S <- 0
sigma2.u.stim.S[1] <- median(vardir[1:m.sam])
lamda.stim.S[1] <- 0.2
k <- 0
diff.S <- PRECISION + 1
while ((diff.S > PRECISION) & (k < MAXITER)) {
k <- k + 1
Z.area=diag(1,m.sam)
C<-lamda.stim.S[k]*diag(1,p)
Cov<-(x.sam%*%C%*%t(x.sam))*W.sam+sigma2.u.stim.S[k]*Z.area%*%t(Z.area)
V <- Cov + I * vardir[1:m.sam]
Vi <- solve(V)
Xt=t(x.sam)
yt=t(y.sam)
XtVi <- Xt %*% Vi
Q <- solve(XtVi %*% x.sam)
P <- Vi - t(XtVi) %*% Q %*% XtVi
b.s <- Q %*% XtVi %*% y.sam
derVlamda<-(x.sam%*%t(x.sam))*W.sam
derSigma<-Z.area%*%t(Z.area)
PD <- P %*% derSigma
PR <- P %*% derVlamda
Pdir <- P %*% y.sam
s[1, 1] <- (-0.5) * sum(diag(PD)) + (0.5) * (yt %*%PD %*% Pdir)
s[2, 1] <- (-0.5) * sum(diag(PR)) + (0.5) * (yt %*%PR %*% Pdir)
Idev[1, 1] <- (0.5) * sum(diag(PD %*% PD))
Idev[1, 2] <- (0.5) * sum(diag(PD %*% PR))
Idev[2, 1] <- Idev[1, 2]
Idev[2, 2] <- (0.5) * sum(diag(PR %*% PR))
par.stim[1, 1] <- sigma2.u.stim.S[k]
par.stim[2, 1] <- lamda.stim.S[k]
stime.fin <- par.stim + solve(Idev) %*% s
sigma2.u.stim.S[k + 1] <- stime.fin[1, 1]
lamda.stim.S[k + 1] <- stime.fin[2, 1]
diff.S <- max(abs(stime.fin - par.stim)/par.stim)
}
lambda.stim.S <- lamda.stim.S[k + 1]
sigma2.u.stim.S[k + 1] <- max(sigma2.u.stim.S[k + 1], 0)
sigma2.u.stim.S <- sigma2.u.stim.S[k + 1]
C.est<-lambda.stim.S*diag(1,p)
Sigma.l<-kronecker(C.est,W.sam)
z.mat = list()
for (i in 1:p) {
z.mat[[i]] <- diag(x.sam[,i])
}
Z <- rlist::list.cbind(z.mat)
Cov.est<-Z%*%Sigma.l%*%t(Z)+sigma2.u.stim.S*I%*%t(I)
V<-Cov.est+I*vardir[1:m.sam]
Vi<-solve(V)
Q<-solve(t(x.sam)%*%Vi%*%x.sam)
Beta.hat<-Q%*%t(x.sam)%*%Vi%*%direct
P<-Vi-Vi%*%x.sam%*%solve(t(x.sam)%*%Vi%*%x.sam)%*%t(x.sam)%*%Vi
res<-direct-c(x.sam%*%Beta.hat)
Sigma.u=sigma2.u.stim.S*I
spatial.hat=Sigma.l%*%t(Z)%*%Vi%*%res
u.hat=Sigma.u%*%t(I)%*%Vi%*%res
EBLUP.Mean<-x.sam%*%Beta.hat+Z%*%spatial.hat+I%*%u.hat
zvalue <- Beta.hat/sqrt(diag(Q))
pvalue <- 2 * pnorm(abs(zvalue), lower.tail = FALSE)
loglike <- (-0.5) * (m * log(2 * pi) + determinant(V, logarithm = TRUE)$modulus +
t(res) %*% Vi %*% res)
AIC <- (-2) * loglike + 2 * (p + 2)
BIC <- (-2) * loglike + (p + 2) * log(m)
goodness <- c(loglike = loglike, AIC = AIC, BIC = BIC)
coef <- data.frame(beta = Beta.hat, std.error = sqrt(diag(Q)),tvalue = zvalue, pvalue)
Sigma.w<-matrix(0,((p+1)*m.sam),((p+1)*m.sam))
Sigma.w[1:(p*m.sam),1:(p*m.sam)]<-Sigma.l
Sigma.w[(p*m.sam+1):((p+1)*m.sam),(p*m.sam+1):((p+1)*m.sam)]<-Sigma.u
w.i<-cbind(Z,I)
c.i<-x.sam-w.i%*%Sigma.w%*%t(w.i)%*%Vi%*%x.sam
g1<-matrix(0,m.sam,1)
for (i in 1:m.sam) {
g1[i,1]<-c.i[i,]%*%solve(t(x.sam)%*%Vi%*%x.sam)%*%cbind(c.i[i,])
}
g2<-matrix(0,m.sam,1)
for (i in 1:m.sam) {
g2[i,1]<-w.i[i,]%*%Sigma.w%*%(diag((p+1)*m.sam)-t(w.i)%*%Vi%*%w.i%*%Sigma.w)%*%cbind(w.i[i,])
}
g3<-matrix(0,m.sam,1)
Ds.1<-matrix(0,((p+1)*m.sam),((p+1)*m.sam))
Ds.1[1:(p*m.sam),1:(p*m.sam)]<-kronecker(diag(1,p),W.sam)
Ds.1[(p*m.sam+1):((p+1)*m.sam),(p*m.sam+1):((p+1)*m.sam)]<-0
Ds.2<-diag(c(rep(0,p*m.sam),rep(1,m.sam)))
B.1<-Z%*%(kronecker(diag(1,p),W.sam))%*%t(Z)
B.2<-I%*%t(I)
B<-list(B.1,B.2)
Dv.1<--Vi%*%B.1%*%Vi
Dv.2<--Vi%*%B.2%*%Vi
II<-matrix(0,2,2)
P<-Vi-Vi%*%x.sam%*%solve(t(x.sam)%*%Vi%*%x.sam)%*%t(x.sam)%*%Vi
for(i in 1:2) {
for(j in 1:2) {
II[i,j]<--0.5*sum(diag(P%*%B[[i]]%*%P%*%B[[j]]))
}
}
II<--II
ESS<-matrix(0,2,m.sam)
for (i in 1:m.sam) {
ESS[1,]<-w.i[i,]%*%(Ds.1%*%t(w.i)%*%Vi+Sigma.w%*%t(w.i)%*%Dv.1)
ESS[2,]<-w.i[i,]%*%(Ds.2%*%t(w.i)%*%Vi+Sigma.w%*%t(w.i)%*%Dv.2)
g3[i,1]<-2*t(direct-x.sam%*%Beta.hat)%*%t(ESS)%*%solve(II)%*%ESS%*%(direct-x.sam%*%Beta.hat)
}
EBLUP.MSE.PR<-c(g1+g2+g3)
areacode=1:m.sam
FH.SE=round(sqrt(EBLUP.MSE.PR),2)
FH.CV=round(100*(sqrt(EBLUP.MSE.PR)/EBLUP.Mean),2)
result1= cbind(areacode,EBLUP.Mean, EBLUP.MSE.PR,FH.SE,FH.CV)
colnames(result1)=c("area","EBLUP","EBLUP.MSE","EBLUP.SE","EBLUP.CV")
y.out <- y[indicator==0]
m.out <- length(y.out)
W.out <-W[-(1:m.sam),-(1:m.sam)]
area.out<-m-m.sam
dist.r=matrix(0,m.out,m.sam)
lon_r<-long[(m.sam+1):m]
lat_r<-lat[(m.sam+1):m]
for (i in 1:m.out) {
dbase=as.matrix(rbind(cbind(lon_r[i],lat_r[i]),cbind(as.vector(long[1:m.sam]),as.vector(lat[1:m.sam]))))
dim(dbase)
dist.r[i,]=c(as.matrix(dist(dbase))[-1,1])
}
distance.out.out<-matrix(0,m.out,m.out)
distance.out.out<-as.matrix(dist(cbind(as.vector(lon_r),as.vector(lat_r))))
W.out<-1/(1+dist.r)
W.out.out<-1/(1+distance.out.out)
Sigma.l.out<-kronecker(C.est,W.out)
Sigma.l.out.out<-kronecker(C.est,W.out.out)
z.mat.out = list()
for (i in 1:p) {
z.mat.out[[i]] <- diag(x.out[,i])
}
Z.out <- rlist::list.cbind(z.mat.out)
spatial.hat=Sigma.l.out%*%t(Z)%*%Vi%*%res
EBLUP.Mean.out<-x.out%*%Beta.hat+Z.out%*%spatial.hat
AA<-matrix(0,m.out,1)
for (i in 1:m.out){
AA[i,1]<-x.out[i,]%*%solve(t(x.sam)%*%Vi%*%x.sam)%*%cbind(x.out[i,])
}
BB<-matrix(0,m.out,1)
for(i in 1:m.out){
ZZ<-matrix(Z.out[i,],1,p*m.out)
BB[i,1]<-ZZ%*%(Sigma.l.out.out-Sigma.l.out%*%t(Z)%*%Vi%*%Z%*%t(Sigma.l.out))%*%t(ZZ)
}
EBLUP.MSE.PR.out<-c(AA+sigma2.u.stim.S+BB)
areacode.out=1:area.out
FH.SE.out=round(sqrt(EBLUP.MSE.PR.out),2)
FH.CV.out=round(100*(sqrt(EBLUP.MSE.PR.out)/EBLUP.Mean.out),2)
result2= cbind(areacode.out,EBLUP.Mean.out, EBLUP.MSE.PR.out,FH.SE.out,FH.CV.out)
colnames(result2)=c("area.out","EBLUP.out","EBLUP.MSE_out","EBLUP.SE.out","EBLUP.CV.out")
result <- list(eblup = NA, eblup.out = NA,mse = NA, mse.out = NA, sample = NA, nonsample = NA,
fit = list(estcoef = NA, refvar = NA, spatialcorr = NA, randomeffect = NA, goodness = NA))
result$fit$estcoef <- coef
result$fit$refvar <- sigma2.u.stim.S
result$fit$spatialcorr <- lambda.stim.S
result$fit$goodness <- goodness
result$fit$randomeffect <- u.hat
result$eblup <- EBLUP.Mean
result$eblup.out <- EBLUP.Mean.out
result$mse <- EBLUP.MSE.PR
result$mse.out <- EBLUP.MSE.PR.out
result$sample <- result1
result$nonsample<-result2
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.