inst/models/nightly/GREML_infoMat_test.R

#
#   Copyright 2007-2020 by the individuals mentioned in the source code history
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
# 
#        http://www.apache.org/licenses/LICENSE-2.0
# 
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.

require(OpenMx)
#This test doesn't do any optimization, so there's no need to run it with all 3
#gradient-based optimizers:
if(mxOption(NULL,"Default optimizer")!="SLSQP"){stop("SKIP")}
options(mxCondenseMatrixSlots=TRUE)  #<--Saves memory
require(mvtnorm)


#Generate data:
set.seed(476)
A <- matrix(0,1000,1000)  #<--Empty GRM
A[lower.tri(A)] <- runif(499500, -0.025, 0.025)
A <- A + t(A)
diag(A) <- runif(1000,0.95,1.05) #<--GRM now complete
y <- t(rmvnorm(1,sigma=A*0.5))  #<--Phenotype 'y' has a "population" variance of 1 and h2 of 0.5 
y <- y + rnorm(1000,sd=sqrt(0.5))
x <- rnorm(1000) #<--Covariate 'x' is actually independent of the phenotype.
#Merge variables into data matrix:
dat <- cbind(y,x)
colnames(dat) <- c("y","x") #<--Column names

#The GREML expectation tells OpenMx that the model-expected covariance matrix is named 'V', that the one 
#phenotype is has column label 'y' in the dataset, that the one covariate has column label 'x' in the dataset,
#and that a lead column of ones needs to be appended to the 'X' matrix (for the intercept):
ge <- mxExpectationGREML(V="V",yvars="y", Xvars="x", addOnes=T)

plan <- mxComputeSequence(steps=list(
	mxComputeOnce('fitfunction', c('fit','gradient','hessian')),
	mxComputeReportDeriv(),
	mxComputeReportExpectation()
))

#The MxData object.  N.B. use of 'sort=FALSE' is CRITICALLY IMPORTANT, because the rows and columns of dataset
#'dat' and the rows and columns of GRM 'A' are already properly ordered:
mxdat <- mxData(observed = dat, type="raw", sort=FALSE)

for(pds in 1:3){
	# Test the fully analytic expected information matrix, with `REML=TRUE`: ####
	testmod <- mxModel(
		"GREML_1GRM_1trait", #<--Model name
		#1x1 matrix containing residual variance component:
		mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = var(y)/2, labels = "ve", lbound = 0.0001, 
						 name = "Ve"),
		#1x1 matrix containing additive-genetic variance component:
		mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = var(y)/2, labels = "va", name = "Va"),
		#1000x1000 identity matrix--the "relatedness matrix" for the residuals:
		mxMatrix("Iden",nrow=1000,name="I"),
		#The GRM:
		mxMatrix("Symm",nrow=1000,free=F,values=A,name="A"),
		#The model-expected covariance matrix:
		mxAlgebra((A%x%Va) + (I%x%Ve), name="V"),
		#An MxAlgebra for the heritability:
		mxAlgebra(Va/(Va+Ve), name="h2"),
		mxCI("h2"), #<--Request confidence interval for heritability
		mxdat, #<--MxData object
		ge, #<--GREML expectation
		mxFitFunctionGREML(dV=c(va="A",ve="I"),infoMatType="expected"), #<--GREML fitfunction
		plan #<--Custom compute plan
	)
	testmod$fitfunction@.parallelDerivScheme <- pds
	testrun <- mxRun(testmod) #<--Run model
	testrun$output$gradient
	testrun$output$hessian
	
	mygrad <- c(ve=NA_real_,va=NA_real_)
	myEIM <- matrix(NA_real_,2,2,dimnames=list(c("ve","va"),c("ve","va")))
	
	Vinv <- mxEval(chol2inv(chol(V)),testrun,T)
	dat2 <- mxGREMLDataHandler(data=dat,yvars="y", Xvars="x", addOnes=T)
	X <- dat2$yX[,-1]
	y <- as.matrix(dat2$yX[,1])
	P <- Vinv - Vinv%*%X%*%chol2inv(chol(t(X)%*%Vinv%*%X))%*%t(X)%*%Vinv
	I <- diag(1000)
	mygrad[1] <- tr(I%*%P) - t(P%*%y)%*%I%*%P%*%y
	mygrad[2] <- tr(A%*%P) - t(P%*%y)%*%A%*%P%*%y
	omxCheckCloseEnough(mygrad, testrun$output$gradient, 5e-12)
	
	myEIM[1,1] <- sum((I%*%P)*t(I%*%P))
	myEIM[1,2] <- sum((I%*%P)*t(A%*%P) )
	myEIM[2,1] <- myEIM[1,2]
	myEIM[2,2] <- sum((A%*%P)*t(A%*%P))
	omxCheckCloseEnough(myEIM, testrun$output$hessian, 1e-10)
	
	
	# Test the fully analytic average information matrix, with `REML=TRUE`: ####
	testmod2 <- mxModel(
		"GREML_1GRM_1trait", #<--Model name
		#1x1 matrix containing residual variance component:
		mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = var(y)/2, labels = "ve", lbound = 0.0001, 
						 name = "Ve"),
		#1x1 matrix containing additive-genetic variance component:
		mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = var(y)/2, labels = "va", name = "Va"),
		#1000x1000 identity matrix--the "relatedness matrix" for the residuals:
		mxMatrix("Iden",nrow=1000,name="I"),
		#The GRM:
		mxMatrix("Symm",nrow=1000,free=F,values=A,name="A"),
		#The model-expected covariance matrix:
		mxAlgebra((A%x%Va) + (I%x%Ve), name="V"),
		#An MxAlgebra for the heritability:
		mxAlgebra(Va/(Va+Ve), name="h2"),
		mxCI("h2"), #<--Request confidence interval for heritability
		mxdat, #<--MxData object
		ge, #<--GREML expectation
		mxFitFunctionGREML(dV=c(va="A",ve="I"),infoMatType="average"), #<--GREML fitfunction
		plan #<--Custom compute plan
	)
	testmod2$fitfunction@.parallelDerivScheme <- pds
	testrun2 <- mxRun(testmod2) #<--Run model
	testrun2$output$gradient
	testrun2$output$hessian
	
	mygrad[1] <- sum(I*P) - t(P%*%y)%*%I%*%P%*%y
	mygrad[2] <- sum(A*P) - t(P%*%y)%*%A%*%P%*%y
	omxCheckCloseEnough(mygrad, testrun2$output$gradient, 5e-12)
	
	myEIM[1,1] <- t(P%*%y)%*%I%*%P%*%I%*%P%*%y
	myEIM[1,2] <- t(P%*%y)%*%I%*%P%*%A%*%P%*%y
	myEIM[2,1] <- myEIM[1,2]
	myEIM[2,2] <- t(P%*%y)%*%A%*%P%*%A%*%P%*%y
	omxCheckCloseEnough(myEIM, testrun2$output$hessian, 1e-10)
	
	
	# Test the semi-analytic expected information matrix, with `REML=TRUE`: ####
	testmod3 <- mxModel(
		"GREML_1GRM_1trait", #<--Model name
		#1x1 matrix containing residual variance component:
		mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = var(y)/2, labels = "ve", lbound = 0.0001, 
						 name = "Ve"),
		#1x1 matrix containing additive-genetic variance component:
		mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = var(y)/2, labels = "va", name = "Va"),
		#1000x1000 identity matrix--the "relatedness matrix" for the residuals:
		mxMatrix("Iden",nrow=1000,name="I"),
		#The GRM:
		mxMatrix("Symm",nrow=1000,free=F,values=A,name="A"),
		#The model-expected covariance matrix:
		mxAlgebra((A%x%Va) + (I%x%Ve), name="V"),
		#An MxAlgebra for the heritability:
		mxAlgebra(Va/(Va+Ve), name="h2"),
		mxCI("h2"), #<--Request confidence interval for heritability
		mxdat, #<--MxData object
		ge, #<--GREML expectation
		mxFitFunctionGREML(infoMatType="expected"), #<--GREML fitfunction
		plan #<--Custom compute plan
	)
	testmod3$fitfunction@.parallelDerivScheme <- pds
	testrun3 <- mxRun(testmod3) #<--Run model
	testrun3$output$gradient
	testrun3$output$hessian
	
	mygrad[1] <- tr(I%*%P) - t(P%*%y)%*%I%*%P%*%y
	mygrad[2] <- tr(A%*%P) - t(P%*%y)%*%A%*%P%*%y
	omxCheckCloseEnough(mygrad, testrun3$output$gradient, 5e-11)
	
	myEIM[1,1] <- sum((I%*%P)*t(I%*%P))
	myEIM[1,2] <- sum((I%*%P)*t(A%*%P) )
	myEIM[2,1] <- myEIM[1,2]
	myEIM[2,2] <- sum((A%*%P)*t(A%*%P))
	omxCheckCloseEnough(myEIM, testrun3$output$hessian, 5e-10)
	
	
	# Test the semi-analytic average information matrix, with `REML=TRUE`: ####
	testmod4 <- mxModel(
		"GREML_1GRM_1trait", #<--Model name
		#1x1 matrix containing residual variance component:
		mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = var(y)/2, labels = "ve", lbound = 0.0001, 
						 name = "Ve"),
		#1x1 matrix containing additive-genetic variance component:
		mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = var(y)/2, labels = "va", name = "Va"),
		#1000x1000 identity matrix--the "relatedness matrix" for the residuals:
		mxMatrix("Iden",nrow=1000,name="I"),
		#The GRM:
		mxMatrix("Symm",nrow=1000,free=F,values=A,name="A"),
		#The model-expected covariance matrix:
		mxAlgebra((A%x%Va) + (I%x%Ve), name="V"),
		#An MxAlgebra for the heritability:
		mxAlgebra(Va/(Va+Ve), name="h2"),
		mxCI("h2"), #<--Request confidence interval for heritability
		mxdat, #<--MxData object
		ge, #<--GREML expectation
		mxFitFunctionGREML(infoMatType="average"), #<--GREML fitfunction
		plan #<--Custom compute plan
	)
	testmod4$fitfunction@.parallelDerivScheme <- pds
	testrun4 <- mxRun(testmod4) #<--Run model
	testrun4$output$gradient
	testrun4$output$hessian
	
	mygrad[1] <- sum(I*P) - t(P%*%y)%*%I%*%P%*%y
	mygrad[2] <- sum(A*P) - t(P%*%y)%*%A%*%P%*%y
	omxCheckCloseEnough(mygrad, testrun4$output$gradient, 5e-11)
	
	myEIM[1,1] <- t(P%*%y)%*%I%*%P%*%I%*%P%*%y
	myEIM[1,2] <- t(P%*%y)%*%I%*%P%*%A%*%P%*%y
	myEIM[2,1] <- myEIM[1,2]
	myEIM[2,2] <- t(P%*%y)%*%A%*%P%*%A%*%P%*%y
	omxCheckCloseEnough(myEIM, testrun2$output$hessian, 5e-10)
	
	
	# Test the fully analytic expected information matrix, with `REML=FALSE`: ####
	testmod5 <- mxModel(
		"GREML_1GRM_1trait", #<--Model name
		#1x1 matrix containing residual variance component:
		mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = var(y)/2, labels = "ve", lbound = 0.0001, 
						 name = "Ve"),
		#1x1 matrix containing additive-genetic variance component:
		mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = var(y)/2, labels = "va", name = "Va"),
		#1000x1000 identity matrix--the "relatedness matrix" for the residuals:
		mxMatrix("Iden",nrow=1000,name="I"),
		#The GRM:
		mxMatrix("Symm",nrow=1000,free=F,values=A,name="A"),
		#The model-expected covariance matrix:
		mxAlgebra((A%x%Va) + (I%x%Ve), name="V"),
		#An MxAlgebra for the heritability:
		mxAlgebra(Va/(Va+Ve), name="h2"),
		mxCI("h2"), #<--Request confidence interval for heritability
		mxdat, #<--MxData object
		mxExpectationGREML(V="V",yvars="y", Xvars="x",addOnes=T,REML=F), #<--GREML expectation
		mxFitFunctionGREML(dV=c(va="A",ve="I"),infoMatType="expected"), #<--GREML fitfunction
		plan #<--Custom compute plan
	)
	testmod5$fitfunction@.parallelDerivScheme <- pds
	testrun5 <- mxRun(testmod5) #<--Run model
	testrun5$output$gradient
	testrun5$output$hessian
	
	mygrad[1] <- tr(I%*%Vinv) - t(P%*%y)%*%I%*%P%*%y
	mygrad[2] <- tr(A%*%Vinv) - t(P%*%y)%*%A%*%P%*%y
	omxCheckCloseEnough(mygrad, testrun5$output$gradient, 5e-12)
	
	myEIM[1,1] <- sum((I%*%Vinv)*t(I%*%Vinv))
	myEIM[1,2] <- sum((I%*%Vinv)*t(A%*%Vinv) )
	myEIM[2,1] <- myEIM[1,2]
	myEIM[2,2] <- sum((A%*%Vinv)*t(A%*%Vinv))
	omxCheckCloseEnough(myEIM, testrun5$output$hessian, 1e-10)
	
	
	# Test the fully analytic average information matrix, with `REML=FALSE`: ####
	testmod6 <- mxModel(
		"GREML_1GRM_1trait", #<--Model name
		#1x1 matrix containing residual variance component:
		mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = var(y)/2, labels = "ve", lbound = 0.0001, 
						 name = "Ve"),
		#1x1 matrix containing additive-genetic variance component:
		mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = var(y)/2, labels = "va", name = "Va"),
		#1000x1000 identity matrix--the "relatedness matrix" for the residuals:
		mxMatrix("Iden",nrow=1000,name="I"),
		#The GRM:
		mxMatrix("Symm",nrow=1000,free=F,values=A,name="A"),
		#The model-expected covariance matrix:
		mxAlgebra((A%x%Va) + (I%x%Ve), name="V"),
		#An MxAlgebra for the heritability:
		mxAlgebra(Va/(Va+Ve), name="h2"),
		mxCI("h2"), #<--Request confidence interval for heritability
		mxdat, #<--MxData object
		mxExpectationGREML(V="V",yvars="y", Xvars="x",addOnes=T,REML=F), #<--GREML expectation
		mxFitFunctionGREML(dV=c(va="A",ve="I"),infoMatType="average"), #<--GREML fitfunction
		plan #<--Custom compute plan
	)
	testmod6$fitfunction@.parallelDerivScheme <- pds
	testrun6 <- mxRun(testmod6) #<--Run model
	testrun6$output$gradient
	testrun6$output$hessian
	
	mygrad[1] <- sum(I*Vinv) - t(P%*%y)%*%I%*%P%*%y
	mygrad[2] <- sum(A*Vinv) - t(P%*%y)%*%A%*%P%*%y
	omxCheckCloseEnough(mygrad, testrun6$output$gradient, 5e-12)
	
	myEIM[1,1] <- t(P%*%y)%*%I%*%P%*%I%*%P%*%y
	myEIM[1,2] <- t(P%*%y)%*%I%*%P%*%A%*%P%*%y
	myEIM[2,1] <- myEIM[1,2]
	myEIM[2,2] <- t(P%*%y)%*%A%*%P%*%A%*%P%*%y
	omxCheckCloseEnough(myEIM, testrun6$output$hessian, 1e-10)
	
	
	# Test the semi-analytic expected information matrix, with `REML=FALSE`: ####
	testmod7 <- mxModel(
		"GREML_1GRM_1trait", #<--Model name
		#1x1 matrix containing residual variance component:
		mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = var(y)/2, labels = "ve", lbound = 0.0001, 
						 name = "Ve"),
		#1x1 matrix containing additive-genetic variance component:
		mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = var(y)/2, labels = "va", name = "Va"),
		#1000x1000 identity matrix--the "relatedness matrix" for the residuals:
		mxMatrix("Iden",nrow=1000,name="I"),
		#The GRM:
		mxMatrix("Symm",nrow=1000,free=F,values=A,name="A"),
		#The model-expected covariance matrix:
		mxAlgebra((A%x%Va) + (I%x%Ve), name="V"),
		#An MxAlgebra for the heritability:
		mxAlgebra(Va/(Va+Ve), name="h2"),
		mxCI("h2"), #<--Request confidence interval for heritability
		mxdat, #<--MxData object
		mxExpectationGREML(V="V",yvars="y", Xvars="x",addOnes=T,REML=F), #<--GREML expectation
		mxFitFunctionGREML(infoMatType="expected"), #<--GREML fitfunction
		plan #<--Custom compute plan
	)
	testmod7$fitfunction@.parallelDerivScheme <- pds
	testrun7 <- mxRun(testmod7) #<--Run model
	testrun7$output$gradient
	testrun7$output$hessian
	
	mygrad[1] <- tr(I%*%Vinv) - t(P%*%y)%*%I%*%P%*%y
	mygrad[2] <- tr(A%*%Vinv) - t(P%*%y)%*%A%*%P%*%y
	omxCheckCloseEnough(mygrad, testrun7$output$gradient, 5e-10)
	
	myEIM[1,1] <- sum((I%*%Vinv)*t(I%*%Vinv))
	myEIM[1,2] <- sum((I%*%Vinv)*t(A%*%Vinv) )
	myEIM[2,1] <- myEIM[1,2]
	myEIM[2,2] <- sum((A%*%Vinv)*t(A%*%Vinv))
	omxCheckCloseEnough(myEIM, testrun7$output$hessian, 5e-10)
	
	
	# Test the semi-analytic average information matrix, with `REML=FALSE`: ####
	testmod8 <- mxModel(
		"GREML_1GRM_1trait", #<--Model name
		#1x1 matrix containing residual variance component:
		mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = var(y)/2, labels = "ve", lbound = 0.0001, 
						 name = "Ve"),
		#1x1 matrix containing additive-genetic variance component:
		mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = var(y)/2, labels = "va", name = "Va"),
		#1000x1000 identity matrix--the "relatedness matrix" for the residuals:
		mxMatrix("Iden",nrow=1000,name="I"),
		#The GRM:
		mxMatrix("Symm",nrow=1000,free=F,values=A,name="A"),
		#The model-expected covariance matrix:
		mxAlgebra((A%x%Va) + (I%x%Ve), name="V"),
		#An MxAlgebra for the heritability:
		mxAlgebra(Va/(Va+Ve), name="h2"),
		mxCI("h2"), #<--Request confidence interval for heritability
		mxdat, #<--MxData object
		mxExpectationGREML(V="V",yvars="y", Xvars="x",addOnes=T,REML=F), #<--GREML expectation
		mxFitFunctionGREML(infoMatType="average"), #<--GREML fitfunction
		plan #<--Custom compute plan
	)
	testmod8$fitfunction@.parallelDerivScheme <- pds
	testrun8 <- mxRun(testmod8) #<--Run model
	testrun8$output$gradient
	testrun8$output$hessian
	
	mygrad[1] <- sum(I*Vinv) - t(P%*%y)%*%I%*%P%*%y
	mygrad[2] <- sum(A*Vinv) - t(P%*%y)%*%A%*%P%*%y
	omxCheckCloseEnough(mygrad, testrun8$output$gradient, 5e-11)
	
	myEIM[1,1] <- t(P%*%y)%*%I%*%P%*%I%*%P%*%y
	myEIM[1,2] <- t(P%*%y)%*%I%*%P%*%A%*%P%*%y
	myEIM[2,1] <- myEIM[1,2]
	myEIM[2,2] <- t(P%*%y)%*%A%*%P%*%A%*%P%*%y
	omxCheckCloseEnough(myEIM, testrun8$output$hessian, 5e-10)
}



options(mxCondenseMatrixSlots=FALSE)

Try the OpenMx package in your browser

Any scripts or data that you put into this service are public.

OpenMx documentation built on June 8, 2025, 9:33 p.m.