Description Usage Arguments Value Author(s) Examples
Takes in a set of predictor variables and a set of response variables and gives the SPLS-GLM parameters.
1 | SPLS.binomial.GLM(X, y, A, lambdaY, lambdaX, eps = 0.001, ...)
|
X |
A (NxP) predictor matrix |
y |
A (Nx1) Binomial-distributed response vector |
A |
The number of PLS components |
lambdaY |
A value for the penalty parameters for the soft-thresholding penalization function for Y-weights |
lambdaX |
A value for the penalty parameters for the soft-thresholding penalization function for X-weights |
eps |
Cut off value for convergence step |
... |
Other arguments. Currently ignored |
The SPLS-GLM parameters of D=[X y]
Opeoluwa F. Oyedele and Sugnet Gardner-Lubbe
1 2 3 4 5 6 7 8 9 10 | if(require(MASS))
data(Pima.tr, package="MASS")
X = as.matrix(cbind(Pima.tr[,1:7]))
dimnames(X) = list(1:nrow(X), colnames(X))
y = as.matrix(as.numeric(Pima.tr$type)-1, ncol=1)
#0=No and 1=Yes
dimnames(y) = list(1:nrow(y), paste("type"))
SPLS.binomial.GLM(scale(X), scale(y), A=2, lambdaY=0, lambdaX=0.96, eps=1e-3)
#lambdaX and lambdaY value are determined using function opt.penalty.values
#for more details, see opt.penalty.values help file
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.