SPLS.biplot_no_labels: The Partial Least Squares (PLS) biplot for Sparse Partial...

Description Usage Arguments Value Author(s) Examples

View source: R/AllFunctions.R

Description

Takes in a set of predictor variables and a set of response variables and produces a PLS biplot for the SPLS with the labels of the samples, coefficient points and tick markers excluded.

Usage

1
2
SPLS.biplot_no_labels(X, Y, algorithm = NULL, eps, lambdaY = NULL,
  lambdaX = NULL, ax.tickvec.X = NULL, ax.tickvec.Y = NULL, ...)

Arguments

X

A (NxP) predictor matrix

Y

A (NxM) response matrix

algorithm

The SPLS algorithm

eps

Cut off value for convergence step

lambdaY

A value for the penalty parameters for the soft-thresholding penalization function for Y-weights

lambdaX

A value for the penalty parameters for the soft-thresholding penalization function for X-weights

ax.tickvec.X

tick marker length for each X-variable axis in the biplot

ax.tickvec.Y

tick marker length for the Y-variable axis in the biplot

...

Other arguments. Currently ignored

Value

The PLS biplot of a SPLS of D=[X Y] with some parameters

Author(s)

Opeoluwa F. Oyedele and Sugnet Gardner-Lubbe

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
if(require(robustbase))
data(toxicity, package="robustbase")
Y1 = as.matrix(cbind(toxicity$toxicity))
dimnames(Y1) = list(paste(1:nrow(Y1)), "toxicity")
X1 = as.matrix(cbind(toxicity[,2:10]))
rownames(X1) = paste(1:nrow(X1))
#choosing a value for the penalty parameters lambdaY and lambdaX for this data
main2 = opt.penalty.values(X=scale(X1), Y=scale(Y1), A=2, algorithm=mod.SPLS, eps=1e-5,
from.value.X=0, to.value.X=10, from.value.Y=0, to.value.Y=0, lambdaY.len=1, lambdaX.len=100)
min.RMSEP.value = main2$min.RMSEP.value
lambdaY.to.use = main2$lambdaY.to.use
lambdaX.to.use = main2$lambdaX.to.use
list(lambdaY.to.use=lambdaY.to.use, lambdaX.to.use=lambdaX.to.use, min.RMSEP.value=min.RMSEP.value)
#SPLS analysis
main3 = mod.SPLS(X=scale(X1), Y=scale(Y1), A=2,
lambdaY=lambdaY.to.use, lambdaX=lambdaX.to.use,
eps=1e-5)
X.to.use = main3$X.select
Y.to.use = main3$Y.select
X.new = as.matrix(X1[,X.to.use])
Y.new = as.matrix(Y1[,Y.to.use])
colnames(Y.new) = colnames(Y1)
SPLS.biplot_no_labels(X.new, Y.new,
algorithm=mod.SPLS, lambdaY=lambdaY.to.use,
lambdaX=lambdaX.to.use, eps=1e-5,
ax.tickvec.X=rep(3,ncol(X.new)),
ax.tickvec.Y=rep(4,ncol(Y.new)))

#ash data
if(require(chemometrics))
data(ash, package="chemometrics")
X1 = as.matrix(ash[,10:17], ncol=8)
Y1 = as.matrix(ash$SOT)
colnames(Y1) = paste("SOT")
#choosing a value for the penalty parameters lambdaY and lambdaX for this data
main2 = opt.penalty.values(X=scale(X1), Y=scale(Y1), A=2, algorithm=mod.SPLS, eps=1e-5,
from.value.X=0, to.value.X=500, from.value.Y=0, to.value.Y=0, lambdaY.len=1, lambdaX.len=100)
min.RMSEP.value = main2$min.RMSEP.value
lambdaY.to.use = main2$lambdaY.to.use
lambdaX.to.use = main2$lambdaX.to.use
list(lambdaY.to.use=lambdaY.to.use, lambdaX.to.use=lambdaX.to.use, min.RMSEP.value=min.RMSEP.value)
#SPLS analysis
main3 = mod.SPLS(X=scale(X1), Y=scale(Y1), A=2,
lambdaY=lambdaY.to.use, lambdaX=lambdaX.to.use,
eps=1e-5)
X.to.use = main3$X.select
Y.to.use = main3$Y.select
X.new = as.matrix(X1[,X.to.use])
colnames(X.new)  #P=6
colnames(X1)  #P=8
Y.new = as.matrix(Y1[,Y.to.use])
colnames(Y.new) = colnames(Y1)
colnames(Y.new)
SPLS.biplot_no_labels(X.new, Y.new,
algorithm=mod.SPLS, lambdaY=lambdaY.to.use,
lambdaX=lambdaX.to.use, eps=1e-5,
ax.tickvec.X=rep(1,ncol(X.new)),
ax.tickvec.Y=rep(5,ncol(Y.new)))

Example output

Loading required package: robustbase
$lambdaY.to.use
[1] 0

$lambdaX.to.use
[1] 0

$min.RMSEP.value
[1] 0.4551436

$overall.quality
[1] 0.959

$axis.pred
  logKow      pKa    ELUMO    Ecarb     Emet       RM       IR       Ts 
   0.991    0.933    0.991    1.000    0.916    0.967    1.000    0.958 
       P toxicity 
   0.752    0.815 

$D.hat
   logKow    pKa ELUMO Ecarb   Emet   RM   IR   Ts     P toxicity
1   1.769  1.012  4.98  17.6  2.982 36.0 1.44 36.4  9.85 -0.25379
2   0.850  0.857  4.61  17.1  1.166 28.6 1.44 40.2  6.75 -0.45159
3   1.138  0.928  4.77  17.3  1.712 30.9 1.44 39.0  7.90 -0.39764
4   2.838  1.059  5.18  18.0  5.225 44.3 1.44 32.5 12.42  0.02251
5   0.826  0.859  4.62  17.1  1.112 28.4 1.44 40.3  6.71 -0.45900
6   2.785  1.069  5.19  18.0  5.101 44.0 1.44 32.7 12.40  0.00442
7   1.382  0.877  4.71  17.3  2.286 32.7 1.44 38.3  8.00 -0.31296
8   1.316  0.936  4.80  17.3  2.086 32.3 1.44 38.3  8.33 -0.35155
9   0.330  0.785  4.43  16.9  0.124 24.4 1.44 42.3  5.11 -0.56880
10  2.496  0.921  4.90  17.7  4.627 41.3 1.44 34.2 10.65 -0.02349
11  3.471  0.892  4.96  18.0  6.745 48.8 1.44 30.9 12.43  0.25382
12  4.051  0.830  4.92  18.1  8.046 53.1 1.44 29.1 13.15  0.43367
13  4.508  0.825  4.96  18.3  9.031 56.5 1.44 27.5 14.05  0.56075
14  1.670  0.957  4.88  17.5  2.823 35.1 1.44 37.0  9.22 -0.26203
15  1.623  0.937  4.84  17.4  2.742 34.7 1.44 37.2  8.97 -0.26796
16  2.996  0.873  4.88  17.8  5.746 45.1 1.44 32.6 11.30  0.13024
17  1.906  0.898  4.80  17.5  3.387 36.8 1.44 36.4  9.25 -0.17680
18 -0.295  0.870  4.51  16.8 -1.299 19.8 1.44 44.2  4.48 -0.76948
19  0.219  0.875  4.58  16.9 -0.203 23.7 1.44 42.4  5.58 -0.63037
20 -0.699  0.618  4.03  16.4 -1.918 16.0 1.44 46.6  1.68 -0.79281
21  4.161  0.746  4.78  18.1  8.365 53.7 1.45 29.0 12.72  0.49324
22  3.193  0.796  4.77  17.8  6.244 46.4 1.44 32.2 11.11  0.21093
23 -0.960  0.119  3.14  15.8 -1.987 12.7 1.45 49.4 -2.76 -0.69087
24  0.712  0.856  4.60  17.1  0.871 27.5 1.44 40.7  6.45 -0.48906
25  2.211  0.845  4.74  17.6  4.092 39.0 1.44 35.5  9.46 -0.07485
26  1.215  0.863  4.66  17.2  1.941 31.4 1.44 38.9  7.55 -0.35381
27  1.164  0.327  3.73  16.7  2.359 29.6 1.45 41.1  3.25 -0.18155
28  0.864  0.831  4.57  17.1  1.220 28.6 1.44 40.3  6.57 -0.43894
29  1.926  0.275  3.73  16.9  4.041 35.3 1.45 38.6  4.42  0.04502
30  1.160  0.697  4.37  17.1  1.987 30.5 1.44 39.8  6.14 -0.31122
31  0.676  0.278  3.60  16.5  1.362 25.7 1.45 43.0  1.87 -0.29825
32  1.057 -0.510  2.28  15.9  2.950 26.6 1.47 44.6 -3.50  0.07957
33  2.588  0.301  3.84  17.2  5.433 40.4 1.45 36.2  5.99  0.21711
34  2.068 -0.036  3.21  16.7  4.651 35.6 1.46 39.3  2.29  0.19180
35 -0.414 -0.295  2.49  15.6 -0.410 15.8 1.46 49.0 -4.86 -0.39768
36  2.595 -0.125  3.11  16.8  5.866 39.4 1.46 37.7  2.68  0.36686
37  3.104  0.203  3.73  17.2  6.635 44.1 1.45 34.7  6.30  0.39235
38  0.841  0.608  4.18  16.9  1.390 27.8 1.45 41.2  4.78 -0.36776

$Bmat
       toxicity
logKow    3.509
pKa      -1.915
ELUMO    -1.632
Ecarb     0.724
Emet      3.022
RM        1.880
IR       -0.165
Ts       -2.045
P         1.332

Loading required package: chemometrics
Loading required package: rpart
$lambdaY.to.use
[1] 0

$lambdaX.to.use
[1] 10.10101

$min.RMSEP.value
[1] 0.7697669

[1] "log(P2O5)"  "log(Fe2O3)" "log(Al2O3)" "log(CaO)"   "log(Na2O)" 
[6] "log(K2O)"  
[1] "log(P2O5)"  "log(SiO2)"  "log(Fe2O3)" "log(Al2O3)" "log(CaO)"  
[6] "log(MgO)"   "log(Na2O)"  "log(K2O)"  
[1] "SOT"
$overall.quality
[1] 0.983

$axis.pred
 log(P2O5) log(Fe2O3) log(Al2O3)   log(CaO)  log(Na2O)   log(K2O)        SOT 
     0.736      1.412      1.362      0.964      1.376      0.931      0.983 

$D.hat
    log(P2O5) log(Fe2O3) log(Al2O3) log(CaO) log(Na2O) log(K2O)  SOT
13      1.674    -1.3368    -1.5088     2.11   -1.6558    3.369  935
14      1.611    -1.2965    -1.4650     2.13   -1.9895    3.220  953
15      1.670    -1.3357    -1.5079     2.11   -1.6794    3.360  936
34      1.638    -1.4482    -1.6499     2.06   -2.1084    3.309  939
35      1.604    -1.1509    -1.2858     2.20   -1.7603    3.174  962
37      1.634    -1.0258    -1.1283     2.26   -1.3228    3.217  961
45      1.135     0.1722     0.3054     2.80   -2.3077    1.859 1145
48      1.159     1.4170     1.8459     3.39    0.2463    1.669 1200
61      1.717     0.0319     0.1865     2.76    1.2639    3.198  992
62      1.564    -0.7424    -0.7847     2.39   -1.2373    3.004  992
99      1.618    -0.5289    -0.5157     2.49   -0.4682    3.085  989
210     1.498     0.8006     1.1159     3.11    1.2962    2.553 1085
211     1.543     0.0574     0.2017     2.77    0.1659    2.801 1037
214     1.179     1.5873     2.0583     3.47    0.7078    1.682 1204
215     1.558    -0.6468    -0.6671     2.43   -1.0898    2.973  998
216     1.523    -0.5662    -0.5707     2.47   -1.1646    2.879 1011
220     1.710    -0.9151    -0.9843     2.31   -0.6022    3.369  947
221     1.789    -1.0185    -1.1049     2.27   -0.2834    3.566  922
222     1.521    -0.3700    -0.3285     2.56   -0.8025    2.835 1021
246     1.287     1.1344     1.5087     3.26    0.5508    2.014 1154
247     1.646     0.2233     0.4163     2.85    1.1655    3.001 1019
250     1.702    -0.9058    -0.9737     2.32   -0.6402    3.348  949
251     1.511    -1.1648    -1.3115     2.19   -2.3965    2.969  985
263     1.715    -1.5938    -1.8226     1.99   -1.8793    3.511  912
264     1.715    -1.5192    -1.7304     2.03   -1.7348    3.497  916
265     1.650    -1.9108    -2.2204     1.84   -2.9171    3.428  913
267     1.729    -2.2705    -2.6576     1.67   -3.0885    3.676  875
268     1.774    -2.0500    -2.3808     1.78   -2.3650    3.735  875
269     1.783    -1.8714    -2.1594     1.86   -1.9650    3.719  882
270     1.799    -2.0641    -2.3959     1.77   -2.2262    3.794  868
271     1.703    -2.4167    -2.8406     1.60   -3.5408    3.646  875
272     1.763    -1.8458    -2.1295     1.87   -2.0487    3.668  888
274     1.751    -2.2353    -2.6120     1.69   -2.8771    3.718  872
275     1.717    -1.6848    -1.9350     1.95   -2.0420    3.534  907
276     1.596    -1.1942    -1.3400     2.18   -1.8967    3.165  962
277     1.537    -1.3462    -1.5333     2.10   -2.5778    3.062  969
278     1.517    -1.3164    -1.4984     2.11   -2.6526    3.011  976
279     1.550    -1.2478    -1.4105     2.15   -2.2993    3.073  971
280     1.567    -0.8884    -0.9648     2.32   -1.4996    3.039  984
284     1.565    -0.6151    -0.6272     2.45   -0.9827    2.983  998
285     1.603    -0.9671    -1.0586     2.28   -1.4091    3.137  971
286     1.637    -1.2240    -1.3730     2.16   -1.6825    3.263  950
287     1.631    -1.4737    -1.6820     2.04   -2.2033    3.298  939
288     1.604    -1.2809    -1.4464     2.13   -2.0072    3.201  955
290     1.513    -0.9700    -1.0707     2.28   -2.0083    2.935  994
291     1.676    -1.7475    -2.0162     1.92   -2.4318    3.454  914
293     1.580    -1.1333    -1.2662     2.20   -1.8834    3.117  969
347     1.667     0.6687     0.9687     3.06    2.1559    2.959 1036
411     1.270     0.5449     0.7785     2.98   -0.7011    2.090 1130
462     1.593    -1.5569    -1.7885     2.00   -2.6137    3.229  945
463     1.479     1.4557     1.9237     3.42    2.4349    2.383 1122
490     1.517    -1.5687    -1.8101     2.00   -3.1369    3.061  963
491     1.658    -1.5622    -1.7889     2.00   -2.1939    3.377  928
560     1.526    -0.3866    -0.3485     2.55   -0.8024    2.849 1019
561     1.584    -1.0161    -1.1210     2.26   -1.6316    3.103  974
562     1.266     0.8559     1.1625     3.13   -0.1292    2.020 1146
563     1.505    -0.8756    -0.9547     2.32   -1.8806    2.898 1000
564     1.381    -0.2252    -0.1626     2.62   -1.4508    2.490 1064
565     1.346     0.2647     0.4395     2.85   -0.7336    2.318 1096
566     1.518     0.3455     0.5555     2.90    0.5557    2.689 1057
513     1.435    -0.1160    -0.0227     2.68   -0.8832    2.591 1055
525     1.183     1.5116     1.9651     3.44    0.5913    1.706 1199
540     1.206     0.7607     1.0393     3.08   -0.7056    1.904 1156
547     1.312     0.1451     0.2885     2.80   -1.1916    2.263 1099
550     1.632    -1.6843    -1.9422     1.95   -2.6004    3.342  929
551     1.703    -2.2972    -2.6930     1.66   -3.3105    3.623  881
552     1.581    -0.3355    -0.2802     2.58   -0.3379    2.965 1008
554     1.639    -0.8323    -0.8888     2.35   -0.9164    3.191  969
614     1.118     2.6163     3.3241     3.96    2.2875    1.343 1270
621     1.145     2.0918     2.6784     3.71    1.4521    1.505 1237
622     1.187     2.1175     2.7142     3.72    1.7780    1.595 1228
625     1.417     1.8709     2.4309     3.62    2.8223    2.162 1158
626     1.020     2.2670     2.8833     3.79    0.9656    1.190 1277
630     1.130     2.7415     3.4799     4.02    2.6037    1.344 1273
646     1.051     2.4447     3.1058     3.87    1.5133    1.225 1278
647     1.162     1.6959     2.1909     3.52    0.8075    1.623 1213
649     1.120     1.6044     2.0739     3.48    0.3517    1.545 1219
666     0.906     3.0500     3.8402     4.15    1.7210    0.780 1344
667     0.886     2.6528     3.3475     3.96    0.8237    0.812 1330
670     0.919     2.6112     3.2992     3.95    0.9639    0.896 1319
671     1.329     1.5549     2.0321     3.46    1.6323    2.025 1164
674     1.785    -1.3962    -1.5719     2.09   -1.0359    3.631  904
686     1.552    -0.8330    -0.8977     2.34   -1.4904    2.995  991
689     1.689    -1.6227    -1.8608     1.98   -2.1047    3.459  917
711     1.547    -0.4521    -0.4275     2.52   -0.7919    2.909 1011
715     1.586    -1.3772    -1.5671     2.09   -2.3123    3.179  955
763     1.215     0.6520     0.9059     3.03   -0.8526    1.947 1148
777     1.100     1.1878     1.5572     3.28   -0.5817    1.582 1204
779     1.194     1.0678     1.4177     3.23   -0.1916    1.818 1174
780     1.199     2.0566     2.6401     3.70    1.7429    1.635 1222
823     1.527     0.2585     0.4488     2.86    0.4487    2.726 1051
824     1.347     0.6202     0.8788     3.02   -0.0458    2.249 1114
825     1.541     0.3708     0.5888     2.91    0.7522    2.734 1053
826     1.265     1.4361     1.8794     3.41    0.9842    1.905 1175
827     1.163     0.7322     1.0000     3.07   -1.0440    1.813 1166
902     1.570     0.6801     0.9737     3.06    1.5436    2.741 1061
903     1.483    -0.4967    -0.4886     2.50   -1.2962    2.775 1025
904     1.516     0.2890     0.4854     2.87    0.4348    2.696 1055
905     1.323     0.9434     1.2761     3.17    0.4217    2.133 1136

$Bmat
              SOT
log(P2O5)  -0.239
log(Fe2O3)  3.640
log(Al2O3)  3.228
log(CaO)    1.893
log(Na2O)   1.096
log(K2O)   -3.089

PLSbiplot1 documentation built on May 2, 2019, 9:41 a.m.