The Principal Component Analysis (PCA) biplot with the labels of the samples points excluded

Share:

Description

Takes in a samples by variables data matrix and produces a PCA biplot, where the labels of the samples points excluded.

Usage

1
PCA.biplot_no.SN(D, method = NULL, ax.tickvec.D = NULL, ...)

Arguments

D

A samples by variables data matrix

method

the mod.PCA algorithm

ax.tickvec.D

tick marker length per axis in the PCA biplot

...

Other arguments. Currently ignored

Value

The PCA biplot of D with some parameters

Author(s)

Opeoluwa F. Oyedele and Sugnet Gardner-Lubbe

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
if(require(pls))
data(oliveoil, package="pls")
Dmat = as.matrix(oliveoil)  #(16x11) overall original data matrix
dimnames(Dmat) = list(paste(c("G1","G2","G3","G4","G5","I1","I2","I3","I4","I5",
"S1","S2","S3","S4","S5","S6")),
paste(c("Acidity","Peroxide","K232","K270","DK","Yellow","Green","Brown",
"Glossy","Transp","Syrup")))
PCA.biplot_no.SN(D=Dmat, method=mod.PCA, ax.tickvec.D=c(8,5,5,7,6,4,5,5,8,7,7))

#glass data
if(require(chemometrics))
data(glass, package="chemometrics")
Dmat = matrix(glass,ncol=13)
dimnames(Dmat) = list(1:180, paste(c("Na2O", "MgO", "Al2O3", "SiO2",
"P2O5", "SO3", "Cl", "K2O", "CaO", "MnO", "Fe2O3", "BaO", "PbO")))
PCA.biplot_no.SN(D=Dmat, method=mod.PCA, ax.tickvec.D=rep(5,ncol(Dmat)))

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.