estVC | R Documentation |
Estimate model parameters for covariates, genetic variance components and residual effect.
estVC(y, x, v = list(E=diag(length(y))), initpar, nit = 25,
method = c("ML", "REML"), control = list(), hessian = FALSE)
y |
A numeric vector or a numeric matrix of one column (representing a phenotype for instance). |
x |
A data frame or matrix, representing covariates if not missing. |
v |
A list of matrices representing variance components of interest. Note:
|
initpar |
Optional initial parameter values. When provided, |
nit |
Maximum number of iterations for optimization. Ignored if there are not more than two variance components. |
method |
Either maximum likelihood (ML) or restricted maximum likelihood (REML). |
control |
A list of control parameters to be passed to |
hessian |
Logical. Should a numerically differentiated Hessian matrix be returned? |
The optimization function optim
is adopted in the above function to estimate the parameters and maximum likelihood. Several optimization methods are available for the optimization algorithm in optim
, but we recommend "Nelder-Mead" for the sake of stability. Alternatively, one may choose other options, e.g., "BFGS" to initialize and speed up the estimation procedure and then the procedure will automatically turn to "Nelder-Mead" for final results. If there is only one variance component (other than E
), optimize
will be used for optimization unless initpar
is provided.
Normality is assumed for the random effects. Input data should be free of missing values.
par |
estimates of the model parameters. |
value |
log-likelihood of the model. |
y |
y used. |
x |
associated with x used. |
v |
variance component matrices v used. |
... |
other information. |
Hessian matrix, if requested, pertains to -log-likelihood function.
optim
and rem
.
data(miscEx)
## Not run:
# no sex effect
pheno<- pdatF8[!is.na(pdatF8$bwt) & !is.na(pdatF8$sex),]
ii<- match(rownames(pheno), rownames(gmF8$AA))
v<- list(A=gmF8$AA[ii,ii], D=gmF8$DD[ii,ii])
o<- estVC(y=pheno$bwt, v=v)
o
# sex as fixed effect
fo<- estVC(y=pheno$bwt, x=pheno$sex, v=v)
fo
2*(fo$value-o$value) # log-likelihood test statistic
# sex as random effect
SM<- rem(~sex, data=pheno)
ro<- estVC(y=pheno$bwt, v=c(v,list(Sex=SM$sex)))
ro
2*(ro$value-o$value) # log-likelihood test statistic
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.