R/sim_brar_binary.r

Defines functions print.brar sim_brar_binary

Documented in sim_brar_binary

#' @title Simulate a Trial Using Bayesian Response-Adaptive Randomization with a Control Group for Binary Outcomes
#' @description \code{sim_brar_binary} simulate a trial with two to five arms using Bayesian Response-Adaptive 
#' Randomization with a control group for binary outcomes. The conjugate prior distributions follow Beta
#' (\eqn{Beta(\alpha,\beta)}) distributions and can be specified individually for each arm.
#' @details This function generates a designed trial using Bayesian response-adaptive randomization with
#' a control group under no delay and delayed scenarios for binary outcomes. The function can handle trials with up to
#' 5 arms. This function uses the formula
#' \eqn{\frac{Pr(p_k={\sf max}\{p_1,...,p_K\})^{tp}} {\sum_{k=1}^{K}{Pr(p_k={\sf max}\{p_1,...,p_K\})^{tp}}}} with \code{side} equals to 'upper',
#' and \eqn{\frac{Pr(p_k={\sf min}\{p_1,...,p_K\})^{tp}} {\sum_{k=1}^{K}{Pr(p_k={\sf min}\{p_1,...,p_K\}){tp}}}} 
#' with \code{side} equals to 'lower', utilizing available data at each step.
#' Considering the delay mechanism, \code{Pats} (the number of patients accrued within a certain time frame),
#' \code{nMax} (the assumed maximum accrued number of patients with the disease in the population) and 
#' \code{TimeToOutcome} (the distribution of delayed response times or a fixed delay time for responses) 
#' are parameters in the functions adapted from \url{https://github.com/kwathen/IntroBayesianSimulation}.
#' Refer to the website for more details.
#' @aliases sim_brar_binary
#' @export sim_brar_binary
#' @param Pats the number of patients accrued within a certain time frame indicates the
#' count of individuals who have been affected by the disease during that specific period,
#' for example, a month or a day. If this number is 10, it represents that
#' 10 people have got the disease within the specified time frame.
#' @param nMax the assumed maximum accrued number of patients with the disease in the population, this number
#' should be chosen carefully to ensure a sufficient number of patients are simulated,
#' especially when considering the delay mechanism.
#' @param TimeToOutcome the distribution of delayed response times or a fixed delay time for responses.
#' The delayed time could be a month, a week or any other time frame. When the unit changes,
#' the number of TimeToOutcome should also change. It can be in the format
#' of expression(rnorm( length( vStartTime ),30, 3)), representing delayed responses
#' with a normal distribution, where the mean is 30 days and the standard deviation is 3 days.
#' @param enrollrate probability that patients in the population can enroll in the trial.
#' This parameter is related to the number of people who have been affected by the disease in the population,
#' following an exponential distribution.
#' @param N1 number of participants with equal randomization in the 'initialization' period.
#' Recommend using 10 percent of the total sample size.
#' @param armn number of total arms in the trial.
#' @param h a vector of success probabilities in hypotheses, for example, as c(0.1,0.1) where 0.1 stands for the success probability
#' for both groups. Another example is c(0.1,0.3) where 0.1 and 0.3 stand for the success probabilities
#' for the control and the treatment group, respectively.
#' @param au a vector of cut-off values in the final selection at the end of the trial,
#' with a length equal to the number of arms minus 1.
#' @param N2 maximal sample size for the trial.
#' @param tp tuning parameter. Some commonly used numbers are 0.5, 1 and n/2N.
#' @param armlabel a vector of arm labels with an example of c(1, 2), where 1 and 2 describe
#' how each arm is labeled in a two-armed trial.
#' @param blocksize size of block used for equal randomization regarding participants in the 'initialization' period.
#' Recommend to be an even multiple of the number of total arms.
#' @param alpha1,beta1 \eqn{\alpha} and \eqn{\beta} in the \eqn{Beta(\alpha,\beta)}, prior for arm 1 which
#' stands for the control. Default value is set to 1.
#' @param alpha2,beta2 \eqn{\alpha} and \eqn{\beta} in the \eqn{Beta(\alpha,\beta)}, prior for arm 2.
#' Default value is set to \code{alpha1} and \code{beta1}.
#' @param alpha3,beta3 \eqn{\alpha} and \eqn{\beta} in the \eqn{Beta(\alpha,\beta)} prior for arm 3.
#' Default value is set to \code{alpha1} and \code{beta1}.
#' @param alpha4,beta4 \eqn{\alpha} and \eqn{\beta} in the \eqn{Beta(\alpha,\beta)} prior for arm 4.
#' Default value is set to \code{alpha1} and \code{beta1}..
#' @param alpha5,beta5 \eqn{\alpha} and \eqn{\beta} in the \eqn{Beta(\alpha,\beta)} prior for arm 5.
#' Default value is set to \code{alpha1} and \code{beta1}.
#' @param minstart a specified number of participants when one starts to check decision rules.
#' @param deltaa a vector of minimal effect expected to be observed for early futility stopping in
#' each arm is approximately \eqn{1\%}. The length of this parameter is \code{armn}-1.
#' @param tpp indicator of \code{tp} equals to n/2N. When \code{tp} is n/2N, \code{tpp} should be assigned 1. Default value is set to 0.
#' @param deltaa1 a vector of pre-specified minimal effect size expected to be observed at the final stage
#' for each arm. The length of this parameter is \code{armn}-1.
#' @param side direction of a one-sided test, with values 'upper' or 'lower'.
#' @param ... additional arguments to be passed to \code{\link[stats]{integrate}} (such as rel.tol) from this function.
#' @return \code{sim_brar_binary} returns an object of class "brar". An object of class "brar" is a list containing 
#' final decision, test statistics, the simulated data set and participants accrued for each arm 
#' at the time of termination of that group in one trial.
#' The simulated data set includes 5 columns: participant ID number, enrollment time, observed time of results,
#' allocated arm, and participants' results. In the final decision, 'Superiorityfinal' refers to the selected arm, 
#' while 'Not Selected' indicates the arm stopped due to futility, and 'Control Selected' denotes the control arm chosen 
#' because other arms did not meet futility criteria before the final stage or were not deemed effective at the final stage. 
#' Note that before final stage of the trial, test statistics is calculated from \code{deltaa}, and test statistics is
#' calculated from \code{deltaa1} at the final stage.
#' @importFrom stats rbinom
#' @importFrom Rdpack reprompt
#' @examples
#' #sim_brar_binary with delayed responses follow a normal distribution with a mean
#' #of 30 days and a standard deviation of 3 days, where h1=c(0.2,0.4) and tp=0.5.
#' sim_brar_binary(Pats=10,nMax=50000,TimeToOutcome=expression(rnorm( length( vStartTime ),30, 3)),
#' enrollrate=0.1,N1=24,armn=2,h=c(0.2,0.4),au=0.36,N2=224,tp=0.5,armlabel=c(1,2),blocksize=4,
#' alpha1=1,beta1=1,alpha2=1,beta2=1,minstart=24,deltaa=-0.01,tpp=0,deltaa1=0.1,side='upper')
#' @references 
#' \insertRef{Wathen2017}{RARtrials}


sim_brar_binary<-function(Pats,nMax,TimeToOutcome,enrollrate,N1,armn,h,au,N2,tp,armlabel,blocksize,
                          alpha1=1,beta1=1,alpha2=alpha1,beta2=beta1,alpha3=alpha1,beta3=beta1,
                          alpha4=alpha1,beta4=beta1,alpha5=alpha1,beta5=beta1,minstart,deltaa,tpp=0,deltaa1,side,...){

  popdat<-pop(Pats,nMax,enrollrate)
  vStartTime<-sort(popdat[[3]][1:N2], decreasing = FALSE)
  vOutcomeTime<-SimulateOutcomeObservedTime(vStartTime,TimeToOutcome)
  assign1<-blockrand(blocksize,N1,armn,armlabel)

  data1<-matrix(NA_real_,nrow=N2,ncol=5)
  data1[,1]<-1:N2
  data1[,2]<-vStartTime
  data1[,3]<-vOutcomeTime
  data1[1:N1,4]<-assign1$arm[1:N1]

  for (i in 1:(N1)){
    for (j in 1:armn) {
      if (data1[i, 4]==j ){
        data1[i,5]<-rbinom(1,size=1,prob=h[[j]])
      }
    }
  }

  armleft<-c(1:armn)
  decision<-rep(NA,armn )
  phi<-rep(NA,armn )
  stopp<-rep(NA,armn )
  alpha<-list(alpha1,alpha2,alpha3,alpha4,alpha5)
  beta<-list(beta1,beta2,beta3,beta4,beta5)
  
  for (jjj in minstart:N2){

    if (jjj>minstart){
      treat<-sample(armleft,size =1, prob = as.vector(pii))
      data1[jjj,4]<-treat
      data1[jjj,5]<-rbinom(1,size=1,prob=h[treat])
    }

    if (jjj<N2){
      total<-sum (as.numeric(data1[1:jjj,3])<=as.numeric(data1[jjj,2]))
    }else if (jjj==N2){
      total<-N2
    }

    result<-vector("list",length(armleft))
    mat<-vector("list",armn)

    for (j in 1:length(armleft)) {
      if (total>0){
        if (jjj!=N2){
          data2<-matrix(data1[which(as.numeric(data1[1:jjj,3])<=as.numeric(data1[jjj,2])),],ncol=5)
        }else if (jjj==N2){
          data2<-data1
        }
        tot<-as.numeric(data2[which(data2[,4]==as.numeric(armleft[j])),5])
        mat[[armleft[j]]]<-matrix(c(sum(tot),length(tot) -sum(tot),length(tot)),nrow=1)
      }
    }

    if (length(armleft)>1){
      for (j in 1:length(armleft)){
        if (total>0){
          if (j>1){
            result[[j]]<-pgreater_beta(a1=mat[[1]][1,1]+alpha[[1]],
                                  b1=mat[[1]][1,2]+beta[[1]],
                                  a2=mat[[armleft[j]]][1,1]+alpha[[armleft[j]]],
                                  b2=mat[[armleft[j]]][1,2]+beta[[armleft[j]]],
                                  delta=deltaa[armleft[j]-1],side=side)
          }else if (j==1){
            result[[1]]<-0
          }

        }else if (total==0 ){
          if (j>1){
            result[[j]]<-pgreater_beta(a1=alpha[[1]],
                                  b1=beta[[1]],
                                  a2=alpha[[armleft[j]]],
                                  b2=beta[[armleft[j]]],
                                  delta=deltaa[armleft[j]-1],side=side)
          }else if (j==1){
            result[[1]]<-0
          }
        }

      }

      aloo<-vector("list",length(armleft))
      aloo<-alofun(alpha1=alpha1,beta1=beta1,alpha2=alpha2,beta2=beta2,
                   alpha3=alpha3,beta3=beta3,alpha4=alpha4,beta4=beta4,
                   alpha5=alpha5,beta5=beta5,mat=mat,total=total,armleft=armleft,side=side)

    }


    if (jjj==N2){
      resultt<-vector("list",length(armleft))
      if (length(armleft)>1){
        for (j in 1:length(armleft)){
          if (total>0){
            if (j>1){
              resultt[[j]]<-pgreater_beta(a1=mat[[1]][1,1]+alpha[[1]],
                                     b1=mat[[1]][1,2]+beta[[1]],
                                     a2=mat[[armleft[j]]][1,1]+alpha[[armleft[j]]],
                                     b2=mat[[armleft[j]]][1,2]+beta[[armleft[j]]],
                                     delta=deltaa1[armleft[j]-1],side=side)
            }else if (j==1){
              resultt[[1]]<-0
            }

          }else if (total==0 ){
            if (j>1){
              resultt[[j]]<-pgreater_beta(a1=alpha[[1]],
                                     b1=beta[[1]],
                                     a2=alpha[[armleft[j]]],
                                     b2=beta[[armleft[j]]],
                                     delta=deltaa1[armleft[j]-1],side=side)
            }else if (j==1){
              resultt[[1]]<-0
            }
          }
        }
      }
    }

      posteriorp<-vector("list",length(armleft))
      for (j in 1:length(armleft)){
        if (total>0){
          if (j>1){
            posteriorp[[j]]<-pgreater_beta(a1=mat[[1]][1,1]+alpha[[1]],
                                      b1=mat[[1]][1,2]+beta[[1]],
                                      a2=mat[[armleft[j]]][1,1]+alpha[[armleft[j]]],
                                      b2=mat[[armleft[j]]][1,2]+beta[[armleft[j]]],
                                      delta=deltaa1[armleft[j]-1],side=side)
          }else if (j==1){
            posteriorp[[j]]<-0
          }
        }else if (total==0 ){
          if (j>1){
            posteriorp[[j]]<-pgreater_beta(a1=alpha[[1]],
                                      b1=beta[[1]],
                                      a2=alpha[[armleft[j]]],
                                      b2=beta[[armleft[j]]],
                                      delta=deltaa1[armleft[j]-1],side=side)
          }else if (j==1){
            posteriorp[[j]]<-0
          }
        }
      }


    posteriorp1<-do.call(cbind,posteriorp)
    pii<-as.data.frame(do.call(cbind,aloo))
    colnames(pii)<-armleft

    if (jjj<N2){
      sim111<-do.call(cbind,result)
      colnames(sim111)<-armleft
    } else if (jjj==N2) {
      sim111t<-do.call(cbind,resultt)
      colnames(sim111t)<-armleft
    }


    if ( jjj<N2){
      for (k in 2:length(armleft)) {
        if (sim111[1,k]<0.01 & is.na(decision[armleft[k]])){
          decision[armleft[k]]<-'Futility'
          stopp[armleft[k]]<-jjj
          phi[armleft[k]]<-posteriorp1[1,k]
        }
      }

      if ( 'Futility' %in% decision ){
        armleft<-armleft[! armleft %in%  which (decision %in%  'Futility')]
        pii<- pii[,sprintf("%s",armleft)]
      }

      if((length(armleft)==1 & length( which (decision %in%  'Futility'))==(armn-1))){
        stopp[ which (is.na(decision))]<-jjj
        data11<-data1[1:jjj,]
        if (is.na(decision[1])==TRUE) {
          decision[1]<-'Control Selected'
          phi[1]<-posteriorp1[1,1]
        }

        return(list(decision,phi,data11,stopp))
        break
      }

      for (yy in 1:length(armleft)){
        if ( pii[colnames(pii) %in%  armleft[yy]]<0.1){
          pii[colnames(pii) %in%  armleft[yy]]=0.1
        }else if ( pii[colnames(pii) %in%  armleft[yy]]>0.9){
          pii[colnames(pii) %in%  armleft[yy]]=0.9
        }
      }


      if (tpp==1){
        pii<-(pii^(jjj/(2*N2)))^tp
      }else if (tpp==0){
        pii<-pii^tp
      }
      pii<-pii/sum(pii)
      pii<-pii[ , order(names(pii))]
      armleft<-sort(armleft,decreasing = FALSE)

    }else if (jjj==N2){

      for (k in 2:length(armleft)) {
        if (sim111t[1,k]>au[armleft[k]-1] & is.na(decision[armleft[k]])){
          decision[armleft[k]]<-'Superiorityfinal'
          stopp[armleft[k]]<-jjj
          phi[armleft[k]]<-posteriorp1[1,k]
        }
      }
      for (k in 1:length(armleft)) {
        if (is.na(decision[armleft[k]] )) {
          decision[armleft[k]]<-'Not Selected'
          stopp[armleft[k]]<-jjj
          phi[armleft[k]]<-posteriorp1[1,k]
        }
      }
      if (length( which (decision %in%  'Futility'))==(armn-1) &
          is.na(decision[1])){
          decision[1]<-'Control Selected'
          phi[1]<-posteriorp1[1,1]

      }
      data11<-data1[1:N2,]
      
      nn<-rep(NA,armn)
      for (k in 1:armn) {
        nn[k]=nrow(data1[which(data1[,4]==k ),,drop=FALSE])
      }
      output1<-list(decision[2:armn],phi[2:armn],data11,nn)
      class(output1)<-'brar'

      return(output1)

    }
  }

}


#' @export 
print.brar<-function(x,...){
  cat("\nFinal Decision:\n",paste(x[[1]],sep=', ',collapse=', '),"\n")
  cat("\nTest Statistics:\n",paste(round(x[[2]],2),sep=', ',collapse=', '),"\n")
  cat("\nAccumulated Number of Participants in Each Arm:\n",paste(x[[4]],sep=', ',collapse=', '))
  invisible(x)
}

Try the RARtrials package in your browser

Any scripts or data that you put into this service are public.

RARtrials documentation built on April 4, 2025, 1:21 a.m.