shiftid: Dynamic shift-share analysis for industries

Description Usage Arguments Details Value Author(s) References See Also Examples

Description

Analyzing industry-specific regional growth with the dynamic shift-share analysis

Usage

1
2
3
4
5
shiftid(e_ij1, e_ij2, e_i1, e_i2, time1, time2, 
industry.names = NULL, shift.method = "Dunn", 
gerfin.shifts = "mean", print.results = TRUE, 
plot.results = FALSE, plot.colours = NULL, plot.title = NULL, 
plot.portfolio = FALSE, ...)

Arguments

e_ij1

a numeric vector with i values containing the employment in i industries in region j at time 1

e_ij2

a numeric data frame or matrix with i rows containing the employment in i industries in region j and t columns, representing t (t > 1) years

e_i1

a numeric vector with i values containing the total employment in i industries at time 1

e_i2

a numeric data frame or matrix with i rows containing the total employment in i industries and t columns, representing t (t > 1) years

time1

Initial year

time2

Final year

industry.names

Industry names (e.g. from the relevant statistical classification of economic activities)

shift.method

Method of shift-share-analysis to be used ("Dunn", "Gerfin") (default: shift.method = "Dunn")

gerfin.shifts

If shift.method = "Gerfin": Logical argument that indicates if the shifts are calculated as sums or as means (default: gerfin = "mean")

print.results

Logical argument that indicates if the function shows the results or not

plot.results

Logical argument that indicates if the results have to be plotted

plot.colours

If plot.results = TRUE: Plot colours

plot.title

If plot.results = TRUE: Plot title

plot.portfolio

Logical argument that indicates if the results have to be plotted in a portfolio matrix additionally

...

Additional arguments for the portfolio plot (see the function portfolio)

Details

The shift-share analysis (Dunn 1960) adresses the regional growth (or decline) regarding the over-all development in the national economy. The aim of this analysis model is to identify which parts of the regional economic development can be traced back to national trends, effects of the regional industry structure and (positive) regional factors. The growth (or decline) of regional employment consists of three factors: l_{t+1}-l_t = nps + nds + nts, where l is the employment in the region at time t and t+1, respectively, and nps is the net proportionality shift, nds is the net differential shift and nts is the net total shift. Other variants are e.g. the shift-share method by Gerfin (Index method) and the dynamic shift-share analysis (Barff/Knight 1988).

As there is more than one way to calculate a Dunn-type shift-share analysis and the terms are not used consequently in the regional economic literature, this function and the documentation use the formulae and terms given in Farhauer/Kroell (2013). If shift.method = "Dunn", this function calculates the net proportionality shift (nps), the net differential shift (nds) and the net total shift (nts) where the last one represents the residuum of (positive) regional factors.

This function calculates a dynamic shift-share analysis for at least two years.

Value

A list containing the following objects:

components

A matrix containing the shift-share components related to the chosen method

components.year

A matrix containing the shift-share components for each year

growth

A matrix containing the industry-specific growth values

method

The chosen method, e.g. "Dunn"

Author(s)

Thomas Wieland

References

Arcelus, F. J. (1984): “An Extension of Shift-Share Analysis”. In: In: Growth and Change, 15, 1, p. 3-8.

Barff, R. A./Knight, P. L. (1988): “Dynamic Shift-Share Analysis”. In: Growth and Change, 19, 2, p. 1-10.

Casler, S. D. (1989): “A Theoretical Context for Shift and Share Analysis”. In: Regional Studies, 23, 1, p. 43-48.

Dunn, E. S. Jr. (1960): “A statistical and analytical technique for regional analysis”. In: Papers and Proceedings of the Regional Science Association, 6, p. 97-112.

Esteban-Marquillas, J. M. (1972): “Shift- and share analysis revisited”. In: Regional and Urban Economics, 2, 3, p. 249-261.

Farhauer, O./Kroell, A. (2013): “Standorttheorien: Regional- und Stadtoekonomik in Theorie und Praxis”. Wiesbaden : Springer.

Gerfin, H. (1964): “Gesamtwirtschaftliches Wachstum und regionale Entwicklung”. In: Kyklos, 17, 4, p. 565-593.

Schoenebeck, C. (1996): “Wirtschaftsstruktur und Regionalentwicklung: Theoretische und empirische Befunde fuer die Bundesrepublik Deutschland”. Dortmunder Beitraege zur Raumplanung, 75. Dortmund.

See Also

portfolio, shift, shifti, shift.growth

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
# Example from Farhauer/Kroell (2013), extended:
region_A_t <- c(90,20,10,60)
region_A_t1 <- c(100,40,10,55)
region_A_t2 <- c(105,45,15,60)
# data for region A (time t and t+1)
nation_X_t <- c(400,150,150,400)
nation_X_t1 <- c(440,210,135,480)
nation_X_t2 <- c(460,230,155,500)
# data for the national economy (time t and t+1)
shiftd(region_A_t, data.frame(region_A_t1, region_A_t2), nation_X_t, 
data.frame(nation_X_t1, nation_X_t2), time1 = 2000, time2 = 2002,
plot.results = TRUE, plot.portfolio = TRUE, psize = region_A_t1)

data(Goettingen)
shiftid(Goettingen$Goettingen2008[2:16], Goettingen[2:16,3:11], 
Goettingen$BRD2008[2:16], Goettingen[2:16,13:21],
time1 = 2008, time2 = 2017, industry.names = Goettingen$WA_WZ2008[2:16], 
shift.method = "Dunn")

Example output

Dynamic Shift-Share Analysis 
Method: Dunn 

Shift-share components 
                Components
Growth (t1-t)   45.0000000
National share  39.9644269
Industrial mix   0.1636996
Regional share   4.8718735
Net total shift  5.0355731

Calculation for 4 industries 
Regional employment at time t: 180, at time t+1: 225 (45 / 0.25 %)
National employment at time t: 1100, at time t+1: 1345 (245 / 0.2227273 %)


Dynamic Shift-Share Analysis 
Method: Dunn 

Shift-share components 
                        1        2          3         4         5        6
Growth (t1-t)   -3.000000 29.00000 -1117.0000 -255.0000  -51.0000 524.0000
National share   6.103502 -9.46377   254.5217  160.0638  561.7436 368.2053
Regional share  -9.103502 38.46377 -1371.5217 -415.0638 -612.7436 155.7947
Net total shift -9.103502 38.46377 -1371.5217 -415.0638 -612.7436 155.7947
                        7         8           9       10        11       12
Growth (t1-t)   470.00000 274.00000 -465.000000 2229.000 1178.0000 268.0000
National share  515.03493 286.32383    6.356612 1821.392  977.9869 167.9118
Regional share  -45.03493 -12.32383 -471.356612  407.608  200.0131 100.0882
Net total shift -45.03493 -12.32383 -471.356612  407.608  200.0131 100.0882
                       13       14        15
Growth (t1-t)   1272.0000 4211.000 363.00000
National share  1138.5383 3556.692  47.50353
Regional share   133.4617  654.308 315.49647
Net total shift  133.4617  654.308 315.49647

Calculation for 15 industries 
Regional employment at time t: 56872, at time t+1: 65799 (8927 / 0.1569665 %)
National employment at time t: 27695398, at time t+1: 31443318 (3747920 / 0.1353265 %)

REAT documentation built on Sept. 5, 2021, 5:18 p.m.