AdaBoostNC-C: AdaBoostNC_C KEEL Classification Algorithm

AdaBoostNC_CR Documentation

AdaBoostNC_C KEEL Classification Algorithm

Description

AdaBoostNC_C Classification Algorithm from KEEL.

Usage

AdaBoostNC_C(train, test, pruned, confidence, instancesPerLeaf,
   numClassifiers, algorithm, trainMethod, lambda, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

pruned

pruned. Default value = TRUE

confidence

confidence. Default value = 0.25

instancesPerLeaf

instancesPerLeaf. Default value = 2

numClassifiers

numClassifiers. Default value = 10

algorithm

algorithm. Default value = "ADABOOST.NC"

trainMethod

trainMethod. Default value = "NORESAMPLING"

lambda

lambda. Default value = 2

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::AdaBoostNC_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

RKEEL documentation built on Sept. 15, 2023, 1:08 a.m.

Related to AdaBoostNC-C in RKEEL...