Bojarczuk_GP_C | R Documentation |
Bojarczuk_GP_C Classification Algorithm from KEEL.
Bojarczuk_GP_C(train, test, population_size, max_generations,
max_deriv_size, rec_prob, copy_prob, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
population_size |
population_size. Default value = 200 |
max_generations |
max_generations. Default value = 200 |
max_deriv_size |
max_deriv_size. Default value = 20 |
rec_prob |
rec_prob. Default value = 0.8 |
copy_prob |
copy_prob. Default value = 0.01 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::Bojarczuk_GP_C(data_train, data_test)
algorithm <- RKEEL::Bojarczuk_GP_C(data_train, data_test, population_size=5, max_generations=10)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.