CFAR_C | R Documentation |
CFAR_C Classification Algorithm from KEEL.
CFAR_C(train, test, min_support, min_confidence, threshold,
num_labels, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
min_support |
min_support. Default value = 0.1 |
min_confidence |
min_confidence. Default value = 0.85 |
threshold |
threshold. Default value = 0.15 |
num_labels |
num_labels. Default value = 5 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::CFAR_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.