CFAR-C: CFAR_C KEEL Classification Algorithm

CFAR_CR Documentation

CFAR_C KEEL Classification Algorithm

Description

CFAR_C Classification Algorithm from KEEL.

Usage

CFAR_C(train, test, min_support, min_confidence, threshold,
   num_labels, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

min_support

min_support. Default value = 0.1

min_confidence

min_confidence. Default value = 0.85

threshold

threshold. Default value = 0.15

num_labels

num_labels. Default value = 5

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::CFAR_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

RKEEL documentation built on Sept. 15, 2023, 1:08 a.m.

Related to CFAR-C in RKEEL...