Falco_GP-C: Falco_GP_C KEEL Classification Algorithm

Falco_GP_CR Documentation

Falco_GP_C KEEL Classification Algorithm

Description

Falco_GP_C Classification Algorithm from KEEL.

Usage

Falco_GP_C(train, test, population_size, max_generations,
   max_deriv_size, rec_prob, mut_prob, copy_prob, alpha, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

population_size

population_size. Default value = 200

max_generations

max_generations. Default value = 200

max_deriv_size

max_deriv_size. Default value = 20

rec_prob

rec_prob. Default value = 0.8

mut_prob

mut_prob. Default value = 0.1

copy_prob

copy_prob. Default value = 0.01

alpha

alpha. Default value = 0.9

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples


data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::Falco_GP_C(data_train, data_test)
algorithm <- RKEEL::Falco_GP_C(data_train, data_test, population_size = 5, max_generations = 10)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions


RKEEL documentation built on Sept. 15, 2023, 1:08 a.m.

Related to Falco_GP-C in RKEEL...