CHC_C | R Documentation |
CHC_C Classification Algorithm from KEEL.
CHC_C(train, test, pop_size, evaluations, alfa, restart_change,
prob_restart, prob_diverge, k, distance, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
pop_size |
pop_size. Default value = 50 |
evaluations |
evaluations. Default value = 10000 |
alfa |
alfa. Default value = 0.5 |
restart_change |
restart_change. Default value = 0.35 |
prob_restart |
prob_restart. Default value = 0.25 |
prob_diverge |
prob_diverge. Default value = 0.05 |
k |
k. Default value = 1 |
distance |
distance. Default value = "Euclidean" |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::CHC_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.