C_SVM_C | R Documentation |
C_SVM_C Classification Algorithm from KEEL.
C_SVM_C(train, test, KernelType, C, eps, degree, gamma, coef0,
nu, p, shrinking, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
KernelType |
KernelType. Default value = "RBF" |
C |
C. Default value = 100.0 |
eps |
eps. Default value = 0.001 |
degree |
degree. Default value = 1 |
gamma |
gamma. Default value = 0.01 |
coef0 |
coef0. Default value = 0.0 |
nu |
nu. Default value = 0.1 |
p |
p. Default value = 1.0 |
shrinking |
shrinking. Default value = 1 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::C_SVM_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.