FCRA_C | R Documentation |
FCRA_C Classification Algorithm from KEEL.
FCRA_C(train, test, generations, pop_size, length_S_C, WCAR,
WV, crossover_prob, mut_prob, n1, n2, max_iter,
linguistic_values, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
generations |
generations. Default value = 50 |
pop_size |
pop_size. Default value = 30 |
length_S_C |
length_S_C. Default value = 10 |
WCAR |
WCAR. Default value = 10.0 |
WV |
WV. Default value = 1.0 |
crossover_prob |
crossover_prob. Default value = 1.0 |
mut_prob |
mut_prob. Default value = 0.01 |
n1 |
n1. Default value = 0.001 |
n2 |
n2. Default value = 0.1 |
max_iter |
max_iter. Default value = 100 |
linguistic_values |
linguistic_values. Default value = 5 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::FCRA_C(data_train, data_test, generations=10, pop_size=10)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.