inst/scripts/examples_taking_longer.R

##########################################################################
## examples to package "ROptEst" running longer than 5 sec
##########################################################################

#-----------------------------------------------------------
### example for comparePlot() from comparePlot.Rd
#-----------------------------------------------------------

## this example for comparePlot() will need more time than 
## 5 seconds to run 

N0 <- NormLocationScaleFamily(mean=0, sd=1)
N0.Rob1 <- InfRobModel(center = N0,
           neighbor = ContNeighborhood(radius = 0.5))
IC1 <- optIC(model = N0, risk = asCov())
IC2 <- optIC(model = N0.Rob1, risk = asMSE())

comparePlot(IC1,IC2, withMBR=TRUE)


#------------------------------------------
## example for robest, from robest.Rd
#------------------------------------------

#############################
## 3. Normal (Gaussian) location and scale
#############################

## this example of a two dimensional parameter
## to be estimated will need more time than 
## 5 seconds to run 
## you can find it in 
## system.file("scripts", "examples_taking_longer.R", 
##              package="ROptEst")

## 24 determinations of copper in wholemeal flour
library(MASS)
data(chem)
plot(chem, main = "copper in wholemeal flour", pch = 20)

## Family
NF <- NormLocationScaleFamily()
## ML-estimate
MLest <- MLEstimator(chem, NF)
estimate(MLest)
confint(MLest)

## compute optimally robust estimator (known contamination)
## takes some time -> you can use package RobLox for normal 
## location and scale which is optimized for speed
nb1 <- gennbCtrl(eps = 0.05)
robEst <- robest(chem, NF, nbCtrl = nb1, steps = 3)
estimate.call(robEst)
attr(robEst,"timings")
estimate(robEst)

confint(robEst, symmetricBias())
plot(pIC(robEst))
## plot of relative and absolute information; cf. Kohl (2005)
infoPlot(pIC(robEst))

tmp <- qqplot(chem, robEst, cex.pch=1.5, exp.cex2.pch = -.25,
              exp.fadcol.pch = .55, withLab = TRUE, which.Order=1:4,
              exp.cex2.lbl = .12,exp.fadcol.lbl = .45,
              nosym.pCI = TRUE, adj.lbl=c(1.7,.2),
              exact.pCI = FALSE, log ="xy")
             
## finite-sample correction
if(require(RobLox)){
    n <- length(chem)
    r <- 0.05*sqrt(n)
    r.fi <- finiteSampleCorrection(n = n, r = r)
    fsCor0 <- r.fi/r
    nb1 <- gennbCtrl(eps = 0.05)
    robest <- robest(chem, NF, nbCtrl = nb1, fsCor = fsCor0, steps = 3)
    estimate(robest)
}

## compute optimally robust estimator (unknown contamination)
## takes some time -> use package RobLox!
nb2 <- gennbCtrl(eps.lower = 0.05, eps.upper = 0.1)
robest1 <- robest(chem, NF, nbCtrl = nb2, steps = 3)
estimate(robest1)
confint(robest1, symmetricBias())
plot(pIC(robest1))
## plot of relative and absolute information; cf. Kohl (2005)
infoPlot(pIC(robest1))

#------------------------------------------
## example for roptest, from roptest.Rd
#------------------------------------------

robest.with.roptest <- 
    roptest(chem, NormLocationScaleFamily(), eps = 0.05, steps = 3)

### compare with robEst obtained with robest()

class(robEst)
class(robest.with.roptest)

estimate(robEst)
estimate(robest.with.roptest)

is(robEst, "kStepEstimate")
is(robest.with.roptest, "kStepEstimate")

## only differences in calls  and functional slots, where bodies ...

Try the ROptEst package in your browser

Any scripts or data that you put into this service are public.

ROptEst documentation built on Sept. 12, 2024, 7:40 a.m.