Nothing
## Copyright (C) 2010 - 2023 Dirk Eddelbuettel and Romain Francois
##
## This file is part of Rcpp.
##
## Rcpp is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 2 of the License, or
## (at your option) any later version.
##
## Rcpp is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Rcpp. If not, see <http://www.gnu.org/licenses/>.
if (Sys.getenv("RunAllRcppTests") != "yes") exit_file("Set 'RunAllRcppTests' to 'yes' to run.")
Rcpp::sourceCpp("cpp/stats.cpp")
# test.stats.dbeta <- function() {
vv <- seq(0, 1, by = 0.1)
a <- 0.5; b <- 2.5
expect_equal(runit_dbeta(vv, a, b),
list(NoLog = dbeta(vv, a, b), Log = dbeta(vv, a, b, log=TRUE)),
info = " stats.qbeta")
# test.stats.dbinom <- function( ){
v <- 1:10
expect_equal(runit_dbinom(v) ,
list(false = dbinom(v, 10, .5), true = dbinom(v, 10, .5, TRUE )), info = "stats.dbinom" )
# test.stats.dunif <- function() {
vv <- seq(0, 1, by = 0.1)
expect_equal(runit_dunif(vv),
list(NoLog_noMin_noMax = dunif(vv),
NoLog_noMax = dunif(vv, 0),
NoLog = dunif(vv, 0, 1),
Log = dunif(vv, 0, 1, log=TRUE),
Log_noMax = dunif(vv, 0, log=TRUE)
##,Log_noMin_noMax = dunif(vv, log=TRUE) ## wrong answer
),
info = " stats.dunif")
# test.stats.dgamma <- function( ) {
v <- 1:4
expect_equal(runit_dgamma(v),
list(NoLog = dgamma(v, 1.0, 1.0),
Log = dgamma(v, 1.0, 1.0, log = TRUE ),
Log_noRate = dgamma(v, 1.0, log = TRUE )),
info = "stats.dgamma" )
# test.stats.dpois <- function( ){
v <- 0:5
expect_equal(runit_dpois(v) ,
list( false = dpois(v, .5), true = dpois(v, .5, TRUE )),
info = "stats.dpois" )
# test.stats.dnorm <- function( ) {
v <- seq(0.0, 1.0, by=0.1)
expect_equal(runit_dnorm(v),
list(false_noMean_noSd = dnorm(v),
false_noSd = dnorm(v, 0.0),
false = dnorm(v, 0.0, 1.0),
true = dnorm(v, 0.0, 1.0, log=TRUE ),
true_noSd = dnorm(v, 0.0, log=TRUE ),
true_noMean_noSd = dnorm(v, log=TRUE )),
info = "stats.dnorm" )
# test.stats.dt <- function( ) {
v <- seq(0.0, 1.0, by=0.1)
expect_equal(runit_dt(v),
list(false = dt(v, 5),
true = dt(v, 5, log=TRUE ) # NB: need log=TRUE here
), info = "stats.dt" )
# test.stats.pbeta <- function( ) {
a <- 0.5; b <- 2.5
v <- qbeta(seq(0.0, 1.0, by=0.1), a, b)
expect_equal(runit_pbeta(v, a, b),
list(lowerNoLog = pbeta(v, a, b),
lowerLog = pbeta(v, a, b, log=TRUE),
upperNoLog = pbeta(v, a, b, lower=FALSE),
upperLog = pbeta(v, a, b, lower=FALSE, log=TRUE)), info = " stats.pbeta" )
## Borrowed from R's d-p-q-r-tests.R
x <- c(.01, .10, .25, .40, .55, .71, .98)
pbval <- c(-0.04605755624088, -0.3182809860569, -0.7503593555585,
-1.241555830932, -1.851527837938, -2.76044482378, -8.149862739881)
expect_equal(runit_pbeta(x, 0.8, 2)$upperLog, pbval, info = " stats.pbeta")
expect_equal(runit_pbeta(1-x, 2, 0.8)$lowerLog, pbval, info = " stats.pbeta")
# test.stats.pbinom <- function( ) {
n <- 20
p <- 0.5
vv <- 0:n
expect_equal(runit_pbinom(vv, n, p),
list(lowerNoLog = pbinom(vv, n, p),
lowerLog = pbinom(vv, n, p, log=TRUE),
upperNoLog = pbinom(vv, n, p, lower=FALSE),
upperLog = pbinom(vv, n, p, lower=FALSE, log=TRUE)),
info = " stats.pbinom")
# test.stats.pcauchy <- function( ) {
location <- 0.5
scale <- 1.5
vv <- 1:5
expect_equal(runit_pcauchy(vv, location, scale),
list(lowerNoLog = pcauchy(vv, location, scale),
lowerLog = pcauchy(vv, location, scale, log=TRUE),
upperNoLog = pcauchy(vv, location, scale, lower=FALSE),
upperLog = pcauchy(vv, location, scale, lower=FALSE, log=TRUE)),
info = " stats.pcauchy")
# test.stats.punif <- function( ) {
v <- qunif(seq(0.0, 1.0, by=0.1))
expect_equal(runit_punif(v),
list(lowerNoLog = punif(v),
lowerLog = punif(v, log=TRUE ),
upperNoLog = punif(v, lower=FALSE),
upperLog = punif(v, lower=FALSE, log=TRUE)),
info = "stats.punif" )
# TODO: also borrow from R's d-p-q-r-tests.R
# test.stats.pf <- function( ) {
v <- (1:9)/10
expect_equal(runit_pf(v),
list(lowerNoLog = pf(v, 6, 8, lower=TRUE, log=FALSE),
lowerLog = pf(v, 6, 8, log=TRUE ),
upperNoLog = pf(v, 6, 8, lower=FALSE),
upperLog = pf(v, 6, 8, lower=FALSE, log=TRUE)),
info = "stats.pf" )
# test.stats.pnf <- function( ) {
v <- (1:9)/10
expect_equal(runit_pnf(v),
list(lowerNoLog = pf(v, 6, 8, ncp=2.5, lower=TRUE, log=FALSE),
lowerLog = pf(v, 6, 8, ncp=2.5, log=TRUE ),
upperNoLog = pf(v, 6, 8, ncp=2.5, lower=FALSE),
upperLog = pf(v, 6, 8, ncp=2.5, lower=FALSE, log=TRUE)),
info = "stats.pnf" )
# test.stats.pchisq <- function( ) {
v <- (1:9)/10
expect_equal(runit_pchisq(v),
list(lowerNoLog = pchisq(v, 6, lower=TRUE, log=FALSE),
lowerLog = pchisq(v, 6, log=TRUE ),
upperNoLog = pchisq(v, 6, lower=FALSE),
upperLog = pchisq(v, 6, lower=FALSE, log=TRUE)),
info = "stats.pchisq" )
# test.stats.pnchisq <- function( ) {
v <- (1:9)/10
expect_equal(runit_pnchisq(v),
list(lowerNoLog = pchisq(v, 6, ncp=2.5, lower=TRUE, log=FALSE),
lowerLog = pchisq(v, 6, ncp=2.5, log=TRUE ),
upperNoLog = pchisq(v, 6, ncp=2.5, lower=FALSE),
upperLog = pchisq(v, 6, ncp=2.5, lower=FALSE, log=TRUE)),
info = "stats.pnchisq" )
# test.stats.pgamma <- function( ) {
v <- (1:9)/10
expect_equal(runit_pgamma(v),
list(lowerNoLog = pgamma(v, shape = 2.0),
lowerLog = pgamma(v, shape = 2.0, log=TRUE ),
upperNoLog = pgamma(v, shape = 2.0, lower=FALSE),
upperLog = pgamma(v, shape = 2.0, lower=FALSE, log=TRUE)),
info = "stats.pgamma" )
# test.stats.pnorm <- function( ) {
v <- qnorm(seq(0.0, 1.0, by=0.1))
expect_equal(runit_pnorm(v),
list(lowerNoLog = pnorm(v),
lowerLog = pnorm(v, log=TRUE ),
upperNoLog = pnorm(v, lower=FALSE),
upperLog = pnorm(v, lower=FALSE, log=TRUE)),
info = "stats.pnorm" )
## Borrowed from R's d-p-q-r-tests.R
z <- c(-Inf,Inf,NA,NaN, rt(1000, df=2))
z.ok <- z > -37.5 | !is.finite(z)
pz <- runit_pnorm(z)
expect_equal(pz$lowerNoLog, 1 - pz$upperNoLog, info = "stats.pnorm")
expect_equal(pz$lowerNoLog, runit_pnorm(-z)$upperNoLog, info = "stats.pnorm")
expect_equal(log(pz$lowerNoLog[z.ok]), pz$lowerLog[z.ok], info = "stats.pnorm")
## FIXME: Add tests that use non-default mu and sigma
# test.stats.ppois <- function( ) {
vv <- 0:20
expect_equal(runit_ppois(vv),
list(lowerNoLog = ppois(vv, 0.5),
lowerLog = ppois(vv, 0.5, log=TRUE),
upperNoLog = ppois(vv, 0.5, lower=FALSE),
upperLog = ppois(vv, 0.5, lower=FALSE, log=TRUE)),
info = " stats.ppois")
# test.stats.pt <- function( ) {
v <- seq(0.0, 1.0, by=0.1)
expect_equal(runit_pt(v),
list(lowerNoLog = pt(v, 5),
lowerLog = pt(v, 5, log=TRUE),
upperNoLog = pt(v, 5, lower=FALSE),
upperLog = pt(v, 5, lower=FALSE, log=TRUE) ),
info = "stats.pt" )
# test.stats.pnt <- function( ) {
v <- seq(0.0, 1.0, by=0.1)
expect_equal(runit_pnt(v),
list(lowerNoLog = pt(v, 5, ncp=7),
lowerLog = pt(v, 5, ncp=7, log=TRUE),
upperNoLog = pt(v, 5, ncp=7, lower=FALSE),
upperLog = pt(v, 5, ncp=7, lower=FALSE, log=TRUE) ),
info = "stats.pnt" )
# test.stats.qbinom <- function( ) {
n <- 20
p <- 0.5
vv <- seq(0, 1, by = 0.1)
expect_equal(runit_qbinom_prob(vv, n, p),
list(lower = qbinom(vv, n, p),
upper = qbinom(vv, n, p, lower=FALSE)),
info = " stats.qbinom")
# test.stats.qunif <- function( ) {
expect_equal(runit_qunif_prob(c(0, 1, 1.1, -.1)),
list(lower = c(0, 1, NaN, NaN),
upper = c(1, 0, NaN, NaN)),
info = "stats.qunif" )
# TODO: also borrow from R's d-p-q-r-tests.R
# test.stats.qnorm <- function( ) {
expect_equal(runit_qnorm_prob(c(0, 1, 1.1, -.1)),
list(lower = c(-Inf, Inf, NaN, NaN),
upper = c(Inf, -Inf, NaN, NaN)),
info = "stats.qnorm" )
## Borrowed from R's d-p-q-r-tests.R and Wichura (1988)
expect_equal(runit_qnorm_prob(c( 0.25, .001, 1e-20))$lower,
c(-0.6744897501960817, -3.090232306167814, -9.262340089798408),
info = "stats.qnorm",
tol = 1e-15)
expect_equal(runit_qnorm_log(c(-Inf, 0, 0.1)),
list(lower = c(-Inf, Inf, NaN),
upper = c(Inf, -Inf, NaN)),
info = "stats.qnorm" )
## newer high-precision code in R 4.3.0 has slightly different value
## of -447.197893678525 so lowering tolerance a little
expect_equal(runit_qnorm_log(-1e5)$lower, -447.1974945, tolerance=1e-6)
# test.stats.qpois.prob <- function( ) {
vv <- seq(0, 1, by = 0.1)
expect_equal(runit_qpois_prob(vv),
list(lower = qpois(vv, 0.5),
upper = qpois(vv, 0.5, lower=FALSE)),
info = " stats.qpois.prob")
# test.stats.qt <- function( ) {
v <- seq(0.05, 0.95, by=0.05)
( x1 <- runit_qt(v, 5, FALSE, FALSE) )
( x2 <- qt(v, df=5, lower=FALSE, log=FALSE) )
expect_equal(x1, x2, info="stats.qt.f.f")
( x1 <- runit_qt(v, 5, TRUE, FALSE) )
( x2 <- qt(v, df=5, lower=TRUE, log=FALSE) )
expect_equal(x1, x2, info="stats.qt.t.f")
( x1 <- runit_qt(-v, 5, FALSE, TRUE) )
( x2 <- qt(-v, df=5, lower=FALSE, log=TRUE) )
expect_equal(x1, x2, info="stats.qt.f.t")
( x1 <- runit_qt(-v, 5, TRUE, TRUE) )
( x2 <- qt(-v, df=5, lower=TRUE, log=TRUE) )
expect_equal(x1, x2, info="stats.qt.t.t")
## TODO: test.stats.qgamma
## TODO: test.stats.(dq)chisq
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.