R/hazrate.like.R

Defines functions hazrate.like

Documented in hazrate.like

#' @title hazrate.like - Hazard rate likelihood 
#' 
#' @description Computes the hazard rate likelihood of  
#' off-transect distances, given parameters. Primarily used as 
#' a minimization objective during distance function estimation.
#' 
#' @param a A vector of likelihood parameter values. Length and meaning 
#' depend on \code{series} and \code{expansions}. If no expansion terms 
#' were called for
#'   (i.e., \code{expansions = 0}), the distance likelihoods contain 
#'   one or two canonical parameters (see Details). If one or more 
#'   expansions are called for,
#'   coefficients for the expansion terms follow coefficients for the 
#'   canonical parameters.  If \code{p} is the number of canonical 
#'   parameters, coefficients
#'   for the expansion terms are \code{a[(p+1):length(a)]}.
#'   
#' @param dist A numeric vector containing the observed distances.
#' 
#' @param covars Data frame containing values of covariates at 
#' each observation in \code{dist}.
#' 
#' @param w.lo Scalar value of the lowest observable distance.  
#' This is the \emph{left truncation} of sighting distances in 
#' \code{dist}. Same units as \code{dist}.
#' Values less than \code{w.lo} are allowed in \code{dist}, 
#' but are ignored and their contribution to the likelihood is 
#' set to \code{NA} in the output.
#' 
#' @param w.hi Scalar value of the largest observable distance.  
#' This is the \emph{right truncation} of sighting distances in 
#' \code{dist}.  Same units as \code{dist}.
#' Values greater than \code{w.hi} are allowed in \code{dist}, 
#' but are ignored and their contribution to the likelihood is 
#' set to \code{NA} in the output.
#' 
#' @param series A string specifying the type of expansion to use.  
#' Currently, valid values are 'simple', 'hermite', and 'cosine'; but, see 
#'   \code{\link{dfuncEstim}} about defining other series.
#'   
#' @param expansions A scalar specifying the number of terms in 
#' \code{series}. Depending on the series, this could be 0 through 5.
#'   The default of 0 equates to no expansion terms of any type.
#'   
#' @param scale Logical scalar indicating whether or not to scale 
#' the likelihood so it integrates to 1. This parameter is used to 
#' stop recursion in other functions.
#' If \code{scale} equals TRUE, a numerical integration 
#' routine (\code{\link{integration.constant}}) is called, which 
#' in turn calls this likelihood function again
#' with \code{scale} = FALSE. Thus, this routine knows when its 
#' values are being used to compute the likelihood and when its 
#' value is being used to compute the 
#' constant of integration.  All user defined likelihoods must have 
#' and use this parameter.
#' 
#' @param pointSurvey Boolean. TRUE if \code{dist} is point 
#' transect data, FALSE if line transect data.
#' 
#' @details The hazard rate likelihood is 
#' \deqn{f(x|\sigma,k) = 1 - \exp(-(x/\sigma)^{-k})}{%
#' f(x|Sigma,k) = 1 - exp(-(x/Sigma)^(-k))} 
#' where \eqn{\sigma}{Sigma} determines location 
#' (i.e., distance at which the function equals 1 - exp(-1) = 0.632), 
#' and \eqn{k}{k} determines slope of the function 
#' at \eqn{\sigma}{Sigma} (i.e., larger k equals steeper 
#' slope at \eqn{\sigma}{Sigma}). For distance analysis, 
#' the valid range for both \eqn{\sigma}{Sigma} and k is
#' \eqn{\geq 0}{>=0}.  
#'   
#'   \bold{Expansion Terms}: If \code{expansions} = e 
#'   (e > 0), the expansion function specified by 
#'   \code{series} is called (see for example
#'   \code{\link{cosine.expansion}}). Assuming 
#'   \eqn{h_{ij}(x)}{h_ij(x)} is the \eqn{j^{th}}{j-th} 
#'   expansion term for the \eqn{i^{th}}{i-th} distance and that 
#'   \eqn{c_1, c_2, \dots, c_k}{c(1), c(2), ..., c(k)} are 
#'   (estimated) coefficients for the expansion terms, the 
#'   likelihood contribution for the \eqn{i^{th}}{i-th} 
#'   distance is, \deqn{f(x|a,b,c_1,c_2,\dots,c_e) = f(x|a,b)(1 + 
#'   \sum_{j=1}^{e} c_j h_{ij}(x)).}{%
#'   f(x|a,b,c_1,c_2,...,c_e) = f(x|a,b)(1 + c(1) h_i1(x) + 
#'   c(2) h_i2(x) + ... + c(e) h_ik(x)). }
#'   
#' @return A numeric vector the same length and order as 
#' \code{dist} containing the likelihood contribution for 
#' corresponding distances in \code{dist}. 
#' Assuming \code{L} is the returned vector from one of these 
#' functions, the full log likelihood of all the data is 
#' \code{-sum(log(L), na.rm=T)}. Note that the
#'   returned likelihood value for distances less than 
#'   \code{w.lo} or greater than \code{w.hi} is \code{NA}, 
#'   and thus it is prudent to use \code{na.rm=TRUE} in the
#'   sum. If \code{scale} = TRUE, the integral of the likelihood 
#'   from \code{w.lo} to \code{w.hi} is 1.0. If \code{scale} = 
#'   FALSE, the integral of the likelihood is
#'   arbitrary.
#'   
#'         
#' @seealso \code{\link{dfuncEstim}},
#'          \code{\link{halfnorm.like}},
#'          \code{\link{uniform.like}},
#'          \code{\link{negexp.like}},
#'          \code{\link{Gamma.like}}
#'          
#' @examples \dontrun{
#' x <- seq(0, 100, length=100)
#' 
#' # Plots showing effects of changes in sigma
#' plot(x, hazrate.like(c(20, 5), x), type="l", col="red")
#' plot(x, hazrate.like(c(40, 5), x), type="l", col="blue")
#' 
#' # Plots showing effects of changes in beta
#' plot(x, hazrate.like(c(50, 20), x), type="l", col="red")
#' plot(x, hazrate.like(c(50, 2), x), type="l", col="blue")
#' }
#'          
#' @keywords models
#' @export

hazrate.like <- function(a, 
                         dist, 
                         covars = NULL, 
                         w.lo = units::set_units(0,"m"), 
                         w.hi = max(dist), 
                         series = "cosine", 
                         expansions = 0, 
                         scale = TRUE, 
                         pointSurvey = FALSE){
  
  # rule is: parameter 'a' never has units.
  # upon entry: 'dist', 'w.lo', and 'w.hi' all have units 
  dist[ (dist < w.lo) | (dist > w.hi) ] <- NA

  # What's in a? : 
  #   If no covariates: a = [Sigma, k, <expansion coef>]
  #   If covariates:    a = [(Intercept), b1, ..., bp, k, <expansion coef>]
  
  if(!is.null(covars)){
    q <- ncol(covars)
    beta <- a[1:q]
    s <- drop( covars %*% beta )
    s <- exp(s)  # link function here
  } else {
    s <- a[1]
  }
  
	K <- a[length(a) - expansions]
	key <- -(( units::drop_units(dist)/s )^(-K))
	key <- 1 - exp(key)
	# Above is safe. Units of sigma will scale to units of dist. 'key' is unit-less
	dfunc <- key

  if(expansions > 0){

    w <- w.hi - w.lo

		if (series=="cosine"){
            dscl = units::drop_units(dist/w)  # unit conversion here; drop units is safe
            exp.term <- cosine.expansion( dscl, expansions )
		} else if (series=="hermite"){
            dscl = units::drop_units(dist/s)
            exp.term <- hermite.expansion( dscl, expansions )
		} else if (series == "simple") {
            dscl = units::drop_units(dist/w)
            exp.term <- simple.expansion( dscl, expansions )
    } else {
            stop( paste( "Unknown expansion series", series ))
    }

    expCoefs <- a[(length(a)-(expansions-1)):(length(a))]
    key <- key * (1 + c(exp.term %*% expCoefs))
    
    # without monotonicity restraints, function can go negative, 
    # especially in a gap between datapoints. This makes no sense in distance
    # sampling and screws up the convergence. 
    key[ which(key < 0) ] <- 0
  }

  if( scale ){
      key = key / integration.constant(dist = dist
                                     , density = hazrate.like
                                     , a = a
                                     , covars = covars
                                     , w.lo = w.lo
                                     , w.hi = w.hi
                                     , series = series
                                     , expansions = expansions
                                     , pointSurvey = pointSurvey)
  }
  
  c(key)
}

Try the Rdistance package in your browser

Any scripts or data that you put into this service are public.

Rdistance documentation built on July 9, 2023, 6:46 p.m.