R/Kmeans_clustering.R

Defines functions plot.k_hurst autoplot.k_hurst print.k_hurst kmeans_hurst

Documented in kmeans_hurst plot.k_hurst print.k_hurst

#' K-means clustering
#'
#' @description
#' This function performs k-means clustering of realisations
#' based on the estimated Hurst functions.
#'
#' @param X.t A list of data frames. In each data frame, the first column is a numeric time sequence
#' and the second gives the values of the processes or time series. To get reliable results, it is
#' recommended to use at least 500 time points. See Examples for usage.
#'
#' @param k The desired number of clusters.
#' @param ... Optional arguments: \code{iter.max}, \code{nstart} and \code{algorithm}.
#' Refer \code{\link[stats]{kmeans}}.
#' @param N Argument used for the estimation of Hurst functions. Number of sub-intervals on which the estimation is performed on. Default is set to 100 sub-intervals.
#' @param Q Argument used for the estimation of Hurst functions. Fixed integer greater than or equal to 2. Default is set to 2.
#' @param L Argument used for the estimation of Hurst functions. Fixed integer greater than or equal to 2. Default is set to 2.
#'
#' @return An object list of class \code{"k_hurst"} with print and plot methods. The list has following components:
#' \describe{
#'   \item{\code{cluster_info}}{A data frame indicating the cluster number and euclidean distance to cluster center of
#'   each smoothed estimated Hurst function (item) }
#'   \item{\code{cluster}}{A vector of cluster number of each item.}
#'   \item{\code{cluster_sizes}}{Number of item in each cluster.}
#'   \item{\code{centers}}{A data frame of cluster centers. Center obtained as the average of each smoothed estimated Hurst function in the cluster.
#'   Columns denote time points in which estimates were obtained. Row names denote cluster numbers.}
#'   \item{\code{smoothed_Hurst_estimates}}{A data frame of smoothed Hurst estimates. Columns denote time points in which estimates were obtained.
#'   Rows denote estimates for each realisation.}
#'   \item{\code{raw_Hurst_estimates}}{A list of data frames of raw Hurst estimates.}
#'   \item{\code{call}}{Information about the input parameters used.}
#' }
#'
#' @details
#' The Hurst function of each realisation is estimated using \code{\link{Hurst}}. The smoothed Hurst estimates are
#' used for k-means clustering in \code{\link[stats]{kmeans}}. The Hartigan and Wong algorithm is used as the
#' default k-means clustering algorithm.
#'
#' @importFrom proxy dist
#' @importFrom stats loess kmeans
#'
#' @export kmeans_hurst
#'
#' @seealso \code{\link{print.k_hurst}}, \code{\link{plot.k_hurst}}, \code{\link{hclust_hurst}}
#'
#' @examples
#' \donttest{
#' #Simulation of multifractional processes
#' t <- seq(0, 1, by = (1/2)^10)
#' H1 <- function(t) {return(0.1 + 0*t)}
#' H2 <- function(t) {return(0.2 + 0.45*t)}
#' H3 <- function(t) {return(0.5 - 0.4 * sin(6 * 3.14 * t))}
#' X.list.1 <- replicate(3, GHBMP(t, H1),simplify = FALSE)
#' X.list.2 <- replicate(3, GHBMP(t, H2),simplify = FALSE)
#' X.list.3 <- replicate(3, GHBMP(t, H3),simplify = FALSE)
#' X.list <- c(X.list.1, X.list.2, X.list.3)
#'
#' #K-means clustering based on k = 3 clusters
#' KC <- kmeans_hurst(X.list, k = 3)
#' print(KC)
#'
#' #Plot of smoothed Hurst functions in each cluster with cluster centers
#' plot(KC, type = "ec")
#' }
kmeans_hurst <- function(X.t, k, ..., N = 100, Q = 2, L = 2)
{
  if (!is.list(X.t)) {
    stop("X.t must be a list of numeric data frames")
  }

  if (!is.numeric(k) | !(k %% 1 == 0) | !(k > 0) | !(k <= length(X.t))) {
    stop(paste("k must be a numeric positive integer between 1 and ", length(X.t)))
  }

  if (!is.numeric(N)) {
    stop("N must be numeric")
  } else if (!(N %% 1 == 0) | !(N > 0)) {
    stop("N must be a positive integer")
  }

  if (!is.numeric(Q)) {
    stop("Q must be numeric")
  } else if (!(Q %% 1 == 0) | !(Q > 1)) {
    stop("Q must be a positive integer greater than 1")
  }

  if (!is.numeric(L)) {
    stop("L must be numeric")
  } else if (!(L %% 1 == 0) | !(L > 1)) {
    stop("L must be a positive integer greater than 1")
  }

  H<-list()

  for (i in 1:length(X.t)) {
    H[[i]] <- Hurst(X.t[[i]], N, Q, L)
  }

  loess.fn<-function(df){
    sm<-loess(df[,2] ~ df[,1], data = df, span = 0.3)
    return(sm$fitted)
  }

  Smooth_df0 <- data.frame(rbind(t(sapply(H, loess.fn))))
  Smooth_df <- as.data.frame(lapply(Smooth_df0, function(x) pmax(pmin(x, 1), 0)))

  km <- kmeans(Smooth_df, k, ...)
  clusters <- km$cluster
  n_cl <- length(unique(clusters))

  DF <- data.frame(Item = row.names.data.frame(Smooth_df), Cluster = factor(clusters))
  DF <- DF[order(clusters), ]
  rownames(DF)<-NULL

  cl_df<-list()
  center<-list()
  df1<-list()
  dist_df<-list()
  df2<-list()

  for(i in 1:n_cl){
    cl_df[[i]] <- Smooth_df[clusters == i,]
    center[[i]] <- colMeans(cl_df[[i]])
    df1[[i]] <- rbind(cl_df[[i]], center[[i]])
    dist_df[[i]] <- as.matrix(dist(df1[[i]]))
    df2[[i]] <- as.numeric(dist_df[[i]][1:(nrow(cl_df[[i]])), nrow(df1[[i]])])
  }

  clust_DF <- data.frame(DF, Distance_from_center = unlist(df2))
  structure(list(h = DF, cluster_info = clust_DF, cluster = clusters, cluster_sizes = as.vector(table(clusters)),
                 centers=as.data.frame(do.call(rbind,center)), smoothed_Hurst_estimates = Smooth_df,
                 raw_Hurst_estimates = H, call = match.call()), class = "k_hurst")


}


#' Print method for "k_hurst" class objects
#'
#' @description
#' Prints the results of k-means clustering of realisations of processes.
#'
#' @param x Object of class \code{"k_hurst"}.
#' @param ... Other arguments.
#'
#' @return Prints an object of class \code{"k_hurst"}.
#'
#' @seealso \code{\link{kmeans_hurst}}
#'
#' @exportS3Method Rmfrac::print
print.k_hurst <- function(x, ...)
{
  cat("K-means clustering with ", length(x$cluster_sizes), " clusters of sizes ",
      paste(x$cluster_sizes, collapse = ", "), "\n", sep = "")
  cat("\nClustering information with the distance from the cluster center:\n")
  print(x$cluster_info)
  cat("\nOther available components:\n", sep = "\n")
  print(names(x))
  invisible(x)
}

#' @importFrom ggplot2 autoplot ggplot facet_wrap geom_line labs aes
#' @importFrom rlang .data
#' @importFrom stats aggregate
#' @export
#'
autoplot.k_hurst <- function(object, ..., type = "estimates")
{
  smth_h <- object$smoothed_Hurst_estimates
  raw_h <- object$raw_Hurst_estimates
  cluster <- object$cluster
  cent <- object$centers

  DF <- data.frame(
    clus = rep(cluster, each = ncol(smth_h)),
    item = rep(1:nrow(smth_h), each = ncol(smth_h)),
    t = unlist(lapply(raw_h, function(df) df[[1]])),
    smth_est = as.vector(t(smth_h))
  )

  DF1 <- aggregate(smth_est ~ clus+t, data = DF, FUN = mean)

  DF1["item"] <- DF1["clus"]

  if (type == "estimates")
  {
    p <- ggplot(DF, aes(.data$t, .data$smth_est, group = .data$item)) +
      facet_wrap(~clus, ncol = 2, scales = "free_x") +
      geom_line(color = "black") +
      labs(title = "Smoothed Hurst estimates in each cluster", x = "Time", y = "Smoothed Hurst estimates")


  }
  else if (type == "centers")
  {
    p <- ggplot(DF1, aes(.data$t, .data$smth_est)) +
      facet_wrap(~clus, ncol = 2, scales = "free_x") +
      geom_line(color = "red") +
      labs(title = "Cluster centers", x = "Time", y = "Smoothed Hurst estimates")


  }
  else if (type == "ec")
  {
    p <- ggplot(DF, aes(.data$t, .data$smth_est, group = .data$item)) +
      geom_line(color = "black") +
      geom_line(data = DF1, aes(.data$t, .data$smth_est), color = "red") +
      facet_wrap(~clus, ncol = 2, scales = "free_x") +
      labs(title = "Smoothed Hurst estimates in each cluster and cluster center", x = "Time", y = "Smoothed Hurst estimates")


  }
  else
  {
    message("Invalid type")
  }

}


#' Plot smoothed Hurst functions in each cluster with cluster centers
#'
#' @description
#' Creates a plot of the smoothed Hurst functions of realisations of processes (or time series) separately in each cluster with cluster centers using the return from
#' \code{\link{kmeans_hurst}}. Options to plot only estimates, only centers or both are available.
#'
#' @param x Return from \code{\link{kmeans_hurst}}.
#' @param type The type of plot required.
#' \describe{
#' \item{\code{"estimates"}}{Only the smoothed Hurst functions in each cluster.}
#' \item{\code{"centers"}}{Only the cluster centers. Center denotes average of all smoothed Hurst functions in the cluster.}
#' \item{\code{"ec"}}{Both \code{"estimates"} and \code{"centers"}.}
#' }
#' @param ... Other arguments.
#'
#' @return A ggplot object which is used to plot the relevant \code{type} of plot: \code{"estimates"}, \code{"centers"} or \code{"ec"}.
#' @exportS3Method Rmfrac::plot
#' @importFrom ggplot2 ggplot facet_wrap geom_line labs aes
#' @importFrom rlang .data
#'
#' @seealso \code{\link{kmeans_hurst}}
#'
#' @examples
#' \donttest{
#' #Simulation of multifractional processes
#' t <- seq(0, 1, by = (1/2)^10)
#' H1 <- function(t) {return(0.1 + 0*t)}
#' H2 <- function(t) {return(0.2 + 0.45*t)}
#' H3 <- function(t) {return(0.5 - 0.4 * sin(6 * 3.14 * t))}
#' X.list.1 <- replicate(3, GHBMP(t, H1), simplify = FALSE)
#' X.list.2 <- replicate(3, GHBMP(t, H2), simplify = FALSE)
#' X.list.3 <- replicate(3, GHBMP(t, H3), simplify = FALSE)
#' X.list <- c(X.list.1, X.list.2, X.list.3)
#'
#' #K-means clustering based on k=3 clusters
#' KC <- kmeans_hurst(X.list, k = 3)
#' print(KC)
#'
#' #Plot of smoothed Hurst functions in each cluster with cluster centers
#' plot(KC, type = "ec")
#' }
plot.k_hurst <- function(x, type = "estimates", ...) {

  pp <- (autoplot(x, type = type))

  if (interactive()) {
    print(pp)
  }

  invisible(pp)
}

Try the Rmfrac package in your browser

Any scripts or data that you put into this service are public.

Rmfrac documentation built on Sept. 10, 2025, 10:31 a.m.