inst/doc/Introduction-to-SIBER.R

## ----setup, echo = FALSE-------------------------------------------------
knitr::opts_chunk$set(collapse = TRUE, comment = "#>", 
                      fig.width = 6, fig.height = 5)

library(viridis)
palette(viridis(3))


## ----load-data-----------------------------------------------------------
# remove previously loaded items from the current environment and remove previous graphics.
rm(list=ls())
graphics.off()

# Here, I set the seed each time so that the results are comparable. 
# This is useful as it means that anyone that runs your code, *should*
# get the same results as you, although random number generators change 
# from time to time.
set.seed(1)

library(SIBER)

# load in the included demonstration dataset
data("demo.siber.data")
#
# create the siber object
siber.example <- createSiberObject(demo.siber.data)


# Or if working with your own data read in from a *.csv file, you would use
# This *.csv file is included with this package. To find its location
# type
# fname <- system.file("extdata", "demo.siber.data.csv", package = "SIBER")
# in your command window. You could load it directly by using the
# returned path, or perhaps better, you could navigate to this folder
# and copy this file to a folder of your own choice, and create a 
# script from this vingette to analyse it. This *.csv file provides
# a template for how your own files should be formatted.

# mydata <- read.csv(fname, header=T)
# siber.example <- createSiberObject(mydata)





## ----plot-data-----------------------------------------------------------
# Create lists of plotting arguments to be passed onwards to each 
# of the three plotting functions.
community.hulls.args <- list(col = 1, lty = 1, lwd = 1)
group.ellipses.args  <- list(n = 100, p.interval = 0.95, lty = 1, lwd = 2)
group.hull.args      <- list(lty = 2, col = "grey20")



par(mfrow=c(1,1))
plotSiberObject(siber.example,
                  ax.pad = 2, 
                  hulls = F, community.hulls.args, 
                  ellipses = T, group.ellipses.args,
                  group.hulls = T, group.hull.args,
                  bty = "L",
                  iso.order = c(1,2),
                  xlab = expression({delta}^13*C~'\u2030'),
                  ylab = expression({delta}^15*N~'\u2030')
                  )


## ----summary-stats-------------------------------------------------------

par(mfrow=c(1,1))

community.hulls.args <- list(col = 1, lty = 1, lwd = 1)
group.ellipses.args  <- list(n = 100, p.interval = 0.95, lty = 1, lwd = 2)
group.hull.args      <- list(lty = 2, col = "grey20")

# this time we will make the points a bit smaller by 
# cex = 0.5
plotSiberObject(siber.example,
                  ax.pad = 2, 
                  hulls = F, community.hulls.args, 
                  ellipses = F, group.ellipses.args,
                  group.hulls = F, group.hull.args,
                  bty = "L",
                  iso.order = c(1,2),
                  xlab=expression({delta}^13*C~'\u2030'),
                  ylab=expression({delta}^15*N~'\u2030'),
                  cex = 0.5
                  )



# Calculate summary statistics for each group: TA, SEA and SEAc
group.ML <- groupMetricsML(siber.example)
print(group.ML)


# You can add more ellipses by directly calling plot.group.ellipses()
# Add an additional p.interval % prediction ellilpse
plotGroupEllipses(siber.example, n = 100, p.interval = 0.95,
                    lty = 1, lwd = 2)

# or you can add the XX% confidence interval around the bivariate means
# by specifying ci.mean = T along with whatever p.interval you want.
plotGroupEllipses(siber.example, n = 100, p.interval = 0.95, ci.mean = T,
                    lty = 1, lwd = 2)




## ----layman-metrics------------------------------------------------------
# A second plot provides information more suitable to comparing
# the two communities based on the community-level Layman metrics

# this time we will make the points a bit smaller by 
# cex = 0.5
plotSiberObject(siber.example,
                  ax.pad = 2, 
                  hulls = T, community.hulls.args, 
                  ellipses = F, group.ellipses.args,
                  group.hulls = F, group.hull.args,
                  bty = "L",
                  iso.order = c(1,2),
                  xlab=expression({delta}^13*C~'\u2030'),
                  ylab=expression({delta}^15*N~'\u2030'),
                  cex = 0.5
                  )

# or you can add the XX% confidence interval around the bivariate means
# by specifying ci.mean = T along with whatever p.interval you want.
plotGroupEllipses(siber.example, n = 100, p.interval = 0.95,
                  ci.mean = T, lty = 1, lwd = 2) 

# Calculate the various Layman metrics on each of the communities.
community.ML <- communityMetricsML(siber.example) 
print(community.ML)


## ----fit-mvn-------------------------------------------------------------

# options for running jags
parms <- list()
parms$n.iter <- 2 * 10^4   # number of iterations to run the model for
parms$n.burnin <- 1 * 10^3 # discard the first set of values
parms$n.thin <- 10     # thin the posterior by this many
parms$n.chains <- 2        # run this many chains

# define the priors
priors <- list()
priors$R <- 1 * diag(2)
priors$k <- 2
priors$tau.mu <- 1.0E-3

# fit the ellipses which uses an Inverse Wishart prior
# on the covariance matrix Sigma, and a vague normal prior on the 
# means. Fitting is via the JAGS method.
ellipses.posterior <- siberMVN(siber.example, parms, priors)


## ----density-plots-------------------------------------------------------

# The posterior estimates of the ellipses for each group can be used to
# calculate the SEA.B for each group.
SEA.B <- siberEllipses(ellipses.posterior)

siberDensityPlot(SEA.B, xticklabels = colnames(group.ML), 
                xlab = c("Community | Group"),
                ylab = expression("Standard Ellipse Area " ('\u2030' ^2) ),
                bty = "L",
                las = 1,
                main = "SIBER ellipses on each group"
                )

# Add red x's for the ML estimated SEA-c
points(1:ncol(SEA.B), group.ML[3,], col="red", pch = "x", lwd = 2)

# Calculate some credible intervals 
cr.p <- c(0.95, 0.99) # vector of quantiles

# call to hdrcde:hdr using lapply()
SEA.B.credibles <- lapply(
  as.data.frame(SEA.B), 
  function(x,...){tmp<-hdrcde::hdr(x)$hdr},
  prob = cr.p)

# do similar to get the modes, taking care to pick up multimodal posterior
# distributions if present
SEA.B.modes <- lapply(
  as.data.frame(SEA.B), 
  function(x,...){tmp<-hdrcde::hdr(x)$mode},
  prob = cr.p, all.modes=T)



## ----bayesian-layman-----------------------------------------------------

# extract the posterior means
mu.post <- extractPosteriorMeans(siber.example, ellipses.posterior)

# calculate the corresponding distribution of layman metrics
layman.B <- bayesianLayman(mu.post)


# --------------------------------------
# Visualise the first community
# --------------------------------------
siberDensityPlot(layman.B[[1]], xticklabels = colnames(layman.B[[1]]), 
                bty="L", ylim = c(0,20))

# add the ML estimates (if you want). Extract the correct means 
# from the appropriate array held within the overall array of means.
comm1.layman.ml <- laymanMetrics(siber.example$ML.mu[[1]][1,1,],
                                 siber.example$ML.mu[[1]][1,2,]
                                 )
points(1:6, comm1.layman.ml$metrics, col = "red", pch = "x", lwd = 2)


# --------------------------------------
# Visualise the second community
# --------------------------------------
siberDensityPlot(layman.B[[2]], xticklabels = colnames(layman.B[[2]]), 
                bty="L", ylim = c(0,20))

# add the ML estimates. (if you want) Extract the correct means 
# from the appropriate array held within the overall array of means.
comm2.layman.ml <- laymanMetrics(siber.example$ML.mu[[2]][1,1,],
                                 siber.example$ML.mu[[2]][1,2,]
)
points(1:6, comm2.layman.ml$metrics, col = "red", pch = "x", lwd = 2)


# --------------------------------------
# Alternatively, pull out TA from both and aggregate them into a 
# single matrix using cbind() and plot them together on one graph.
# --------------------------------------

# go back to a 1x1 panel plot
par(mfrow=c(1,1))

siberDensityPlot(cbind(layman.B[[1]][,"TA"], layman.B[[2]][,"TA"]),
                xticklabels = c("Community 1", "Community 2"), 
                bty="L", ylim = c(0,20),
                las = 1,
                ylab = "TA - Convex Hull Area",
                xlab = "")

Try the SIBER package in your browser

Any scripts or data that you put into this service are public.

SIBER documentation built on May 30, 2017, 2:03 a.m.