prepareComparisonPlot: prepare data frame for comparisons (boxplots, violin plots)

View source: R/funKerasCensus.R

prepareComparisonPlotR Documentation

prepare data frame for comparisons (boxplots, violin plots)

Description

converts result from a spot run into the long format for ggplot.

Usage

prepareComparisonPlot(
  runNrMl,
  runNrDl,
  directory,
  defaultModelList = list("dl", "cvglmnet", "kknn", "ranger", "rpart", "svm", "xgboost"),
  tunedModelList = list("dl", "cvglmnet", "kknn", "ranger", "rpart", "svm", "xgboost")
)

Arguments

runNrMl

run number (character) of ml models

runNrDl

run number (character) of dl models

directory

location of the (non-default, e.g., tuned) parameter file

defaultModelList

default model list. Default: list("dl", "cvglmnet", "kknn", "ranger", "rpart" , "svm", "xgboost")

tunedModelList

tuned model list. Default: list("dl", "cvglmnet", "kknn", "ranger", "rpart" , "svm", "xgboost")

Value

data frame with results:

x

integer representing step

y

corresponding function value at step x.

name

ml/dl model name, e.g., ranger

size

initial design size.

yInitMin

min y value before SMBO is started, based on the initial design only.

Examples


### These examples require an activated Python environment as described in
### Bartz-Beielstein, T., Rehbach, F., Sen, A., and Zaefferer, M.:
### Surrogate Model Based Hyperparameter Tuning for Deep Learning with SPOT,
### June 2021. http://arxiv.org/abs/2105.14625.
PYTHON_RETICULATE <- FALSE
if(PYTHON_RETICULATE){
runNrMl <- list("15")
runNrDl <- list("28")
directory <- "../book/data"
prepareComparisonPlot(runNrMl,
                    runNrDl,
                    directory)
}


SPOTMisc documentation built on Sept. 5, 2022, 5:06 p.m.