View source: R/kerasOptimizer.R
selectKerasOptimizer | R Documentation |
Select one of the following optimizers: "SDG", "RMSPROP", "ADAGRAD", "ADADELTA", "ADAM", "ADAMAX", "NADAM".
selectKerasOptimizer( optimizer, learning_rate = 0.01, momentum = 0, decay = 0, nesterov = FALSE, clipnorm = NULL, clipvalue = NULL, rho = 0.9, epsilon = NULL, beta_1 = 0.9, beta_2 = 0.999, amsgrad = FALSE, ... )
optimizer |
integer specifying the algorithm. Can be one of the following:
## SGD: |
learning_rate |
float >= 0. Learning rate. |
momentum |
float >= 0. Parameter that accelerates SGD in the relevant direction and dampens oscillations. |
decay |
float >= 0. Learning rate decay over each update. |
nesterov |
boolean. Whether to apply Nesterov momentum. |
clipnorm |
Gradients will be clipped when their L2 norm exceeds this value. |
clipvalue |
Gradients will be clipped when their absolute value exceeds this value. ### RMS: |
rho |
float >= 0. Decay factor. |
epsilon |
float >= 0. Fuzz factor. If 'NULL', defaults to 'k_epsilon()'. ### ADAM: |
beta_1 |
The exponential decay rate for the 1st moment estimates. float, 0 < beta < 1. Generally close to 1. |
beta_2 |
The exponential decay rate for the 2nd moment estimates. float, 0 < beta < 1. Generally close to 1. |
amsgrad |
Whether to apply the AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and Beyond". |
... |
Unused, present only for backwards compatability |
Optimizer for use with compile.keras.engine.training.Model
.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.