View source: R/startCensusRun.R
| startCensusRun | R Documentation |
Runs to compare standard machine learning and deep learning models
startCensusRun(
modelList = list("dl", "cvglmnet", "kknn", "ranger", "rpart", "svm", "xgboost"),
runNr = "000",
SPOTVersion = "2.10.12",
SPOTMiscVersion = "1.19.2",
timebudget = 3600,
target = "age",
cachedir = "oml.cache",
task.type = "classif",
nobs = 10000,
nfactors = "high",
nnumericals = "high",
cardinality = "high",
data.seed = 1,
prop = 2/3,
batch_size = 32,
tuner.seed = 1,
returnValue = "validationLoss",
initSizeFactor = 2,
spotModel = buildKriging,
spotOptim = optimDE,
lower = NULL,
upper = NULL,
noise = TRUE,
OCBA = TRUE,
OCBABudget = 3,
multiStart = 2,
multFun = 200,
handleNAsMethod = handleNAsMean,
imputeCriteriaFuns = list(is.infinite, is.na, is.nan),
krigingTarget = "ei",
krigingUseLambda = TRUE,
krigingReinterpolate = FALSE,
defaultAsStartingPoint = TRUE,
plots = FALSE,
Rinit = 2,
replicates = 2,
resDummy = FALSE,
verbosity = 0
)
modelList |
list of models. Default:
|
runNr |
character, specifies the run number. Default: |
SPOTVersion |
smallest package version number |
SPOTMiscVersion |
smallest package version number |
timebudget |
time budget Default: |
target |
target "age" |
cachedir |
cache dir "oml.cache" |
task.type |
task type "classif" |
nobs |
number of observations 1e4 |
nfactors |
number of factorial variables "high" |
nnumericals |
number of numerical variables "high" |
cardinality |
cardinality "high" |
data.seed |
1 |
prop |
proportion 2 / 3 |
batch_size |
batch size (for dl) 32 |
tuner.seed |
seed for SPOT 1 |
returnValue |
"validationLoss" |
initSizeFactor |
multiplier for the initial design size 2 |
spotModel |
buildKriging |
spotOptim |
optimDE |
lower |
NULL |
upper |
NULL |
noise |
TRUE |
OCBA |
TRUE |
OCBABudget |
3 |
multiStart |
2 |
multFun |
200 |
handleNAsMethod |
handleNAsMean |
imputeCriteriaFuns |
list(is.infinite, is.na, is.nan) |
krigingTarget |
"ei" |
krigingUseLambda |
TRUE |
krigingReinterpolate |
FALSE |
defaultAsStartingPoint |
TRUE |
plots |
FALSE |
Rinit |
2 |
replicates |
2 |
resDummy |
FALSE |
verbosity |
0 |
### These examples require an activated Python environment as described in
### Bartz-Beielstein, T., Rehbach, F., Sen, A., and Zaefferer, M.:
### Surrogate Model Based Hyperparameter Tuning for Deep Learning with SPOT,
### June 2021. http://arxiv.org/abs/2105.14625.
PYTHON_RETICULATE <- FALSE
if(PYTHON_RETICULATE){
library("dplyr")
library("farff")
library("GGally")
library("keras")
library("tensorflow")
library("Metrics")
library("mlr")
library("reticulate")
library("rpart")
library("rpart.plot")
library("SPOT")
library("SPOTMisc")
library("tfdatasets")
library("rsample")
startCensusRun(modelList=list("ranger", timebudget=60))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.