View source: R/startXGBCensusRun.R
startXGBCensusRun | R Documentation |
Runs to compare standard machine learning and deep learning models
startXGBCensusRun( modelList = list("xgboost"), runNr = "000", SPOTVersion = "2.11.14", SPOTMiscVersion = "1.19.28", timebudget = 3600, target = "age", cachedir = "oml.cache", task.type = "classif", nobs = 10000, nfactors = "high", nnumericals = "high", cardinality = "high", data.seed = 1, prop = 2/3, batch_size = 32, tuner.seed = 1, returnValue = "validationLoss", initSizeFactor = 2, spotModel = buildKriging, spotOptim = optimDE, lower = NULL, upper = NULL, noise = TRUE, OCBA = TRUE, OCBABudget = 3, multiStart = 2, multFun = 200, handleNAsMethod = handleNAsMean, imputeCriteriaFuns = list(is.infinite, is.na, is.nan), krigingTarget = "ei", krigingUseLambda = TRUE, krigingReinterpolate = FALSE, defaultAsStartingPoint = TRUE, plots = FALSE, Rinit = 2, replicates = 2, resDummy = FALSE, verbosity = 0 )
modelList |
list of models. Default:
|
runNr |
character, specifies the run number. Default: |
SPOTVersion |
smallest package version number |
SPOTMiscVersion |
smallest package version number |
timebudget |
time budget Default: |
target |
target "age" |
cachedir |
cache dir "oml.cache" |
task.type |
task type "classif" |
nobs |
number of observations 1e4 |
nfactors |
number of factorial variables "high" |
nnumericals |
number of numerical variables "high" |
cardinality |
cardinality "high" |
data.seed |
1 |
prop |
proportion 2 / 3 |
batch_size |
batch size (for dl) 32 |
tuner.seed |
seed for SPOT 1 |
returnValue |
"validationLoss" |
initSizeFactor |
multiplier for the initial design size 2 |
spotModel |
buildKriging |
spotOptim |
optimDE |
lower |
NULL |
upper |
NULL |
noise |
TRUE |
OCBA |
TRUE |
OCBABudget |
3 |
multiStart |
2 |
multFun |
200 |
handleNAsMethod |
handleNAsMean |
imputeCriteriaFuns |
list(is.infinite, is.na, is.nan) |
krigingTarget |
"ei" |
krigingUseLambda |
TRUE |
krigingReinterpolate |
FALSE |
defaultAsStartingPoint |
FALSE |
plots |
FALSE |
Rinit |
2 |
replicates |
2 |
resDummy |
FALSE |
verbosity |
0 |
### These examples require an activated Python environment as described in ### Bartz-Beielstein, T., Rehbach, F., Sen, A., and Zaefferer, M.: ### Surrogate Model Based Hyperparameter Tuning for Deep Learning with SPOT, ### June 2021. http://arxiv.org/abs/2105.14625. PYTHON_RETICULATE <- FALSE if(PYTHON_RETICULATE){ library("dplyr") library("farff") library("GGally") library("keras") library("tensorflow") library("Metrics") library("mlr") library("reticulate") library("rpart") library("rpart.plot") library("SPOT") library("SPOTMisc") library("tfdatasets") library("rsample") startXGBCensusRun(modelList=list("xgboost"), timebudget=60, plots=TRUE) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.