View source: R/reportSensitivityAnalysis.R
subgroups | R Documentation |
subgroups: returns the table the effects per groups.
Code based on the sbgroups
function written by Gilles Pujol for
the function sb
in the sensitivity
package.
subgroups(x)
x |
data |
data frame with group names and effects
require("SPOT") require("RColorBrewer") set.seed(2) # Interesting for larger n: n <- 2 lower <- c(-0.1, rep(-10,n)) upper <- c(0.1, rep(10,n)) # Model-based optimization res <- spot(,funSphere, lower, upper, control=list(funEvals=30, optimizer = optimNLOPTR)) # Use the surrogate model for prediction predictFunKriging <- function(x){ predict(object = res$modelFit, x) } # Determine sensitivity sens <- sequentialBifurcation(predictFunKriging, lower, upper, k=n+1, interaction = TRUE, verbosity = 0) # Extract group information (variable effects) from sensitivity analysis ps <- subgroups(sens) colors <- brewer.pal(12, "Set3") barplot(ps$effect, names.arg=ps$group, col= colors)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.