loadSQM | R Documentation |
This function takes the path to a project directory generated by SqueezeMeta (whose name is specified in the -p
parameter of the SqueezeMeta.pl script) and parses the results into a SQM object. Alternatively, it can load the project data from a zip file produced by sqm2zip.py
.
loadSQM(
project_path,
tax_mode = "prokfilter",
trusted_functions_only = FALSE,
single_copy_genes = "MGOGs",
load_sequences = TRUE,
engine = "data.table"
)
project_path |
character, a vector of project directories generated by SqueezeMeta, and/or zip files generated by |
tax_mode |
character, which taxonomic classification should be loaded? SqueezeMeta applies the identity thresholds described in Luo et al., 2014. Use |
trusted_functions_only |
logical. If |
single_copy_genes |
character, source of single copy genes for copy number normalization, either |
load_sequences |
logical. If |
engine |
character. Engine used to load the ORFs and contigs tables. Either |
SQM object containing the parsed project. If more than one path is provided in project_path
this function will return a SQMbunch object instead. The structure of this object is similar to that of a SQMlite object (see loadSQMlite
) but with an extra entry named projects
that contains one SQM object for input project. SQM and SQMbunch objects will otherwise behave similarly when used with the subset and plot functions from this package.
Run SqueezeMeta! An example call for running it would be:
/path/to/SqueezeMeta/scripts/SqueezeMeta.pl
-m coassembly -f fastq_dir -s samples_file -p project_dir
The SQM object is a nested list which contains the following information:
lvl1 | lvl2 | lvl3 | type | rows/names | columns | data |
$orfs | $table | dataframe | orfs | misc. data | misc. data | |
$abund | numeric matrix | orfs | samples | abundances (reads) | ||
$bases | numeric matrix | orfs | samples | abundances (bases) | ||
$cov | numeric matrix | orfs | samples | coverages | ||
$cpm | numeric matrix | orfs | samples | covs. / 10^6 reads | ||
$tpm | numeric matrix | orfs | samples | tpm | ||
$seqs | character vector | orfs | (n/a) | sequences | ||
$tax | character matrix | orfs | tax. ranks | taxonomy | ||
$tax16S | character vector | orfs | (n/a) | 16S rRNA taxonomy | ||
$markers | list | orfs | (n/a) | CheckM1 markers | ||
$contigs | $table | dataframe | contigs | misc. data | misc. data | |
$abund | numeric matrix | contigs | samples | abundances (reads) | ||
$bases | numeric matrix | contigs | samples | abundances (bases) | ||
$cov | numeric matrix | contigs | samples | coverages | ||
$cpm | numeric matrix | contigs | samples | covs. / 10^6 reads | ||
$tpm | numeric matrix | contigs | samples | tpm | ||
$seqs | character vector | contigs | (n/a) | sequences | ||
$tax | character matrix | contigs | tax. ranks | taxonomies | ||
$bins | character matrix | contigs | bin. methods | bins | ||
$bins | $table | dataframe | bins | misc. data | misc. data | |
$length | numeric vector | bins | (n/a) | length | ||
$abund | numeric matrix | bins | samples | abundances (reads) | ||
$percent | numeric matrix | bins | samples | abundances (reads) | ||
$bases | numeric matrix | bins | samples | abundances (bases) | ||
$cov | numeric matrix | bins | samples | coverages | ||
$cpm | numeric matrix | bins | samples | covs. / 10^6 reads | ||
$tax | character matrix | bins | tax. ranks | taxonomy | ||
$taxa | $superkingdom | $abund | numeric matrix | superkingdoms | samples | abundances (reads) |
$percent | numeric matrix | superkingdoms | samples | percentages | ||
$phylum | $abund | numeric matrix | phyla | samples | abundances (reads) | |
$percent | numeric matrix | phyla | samples | percentages | ||
$class | $abund | numeric matrix | classes | samples | abundances (reads) | |
$percent | numeric matrix | classes | samples | percentages | ||
$order | $abund | numeric matrix | orders | samples | abundances (reads) | |
$percent | numeric matrix | orders | samples | percentages | ||
$family | $abund | numeric matrix | families | samples | abundances (reads) | |
$percent | numeric matrix | families | samples | percentages | ||
$genus | $abund | numeric matrix | genera | samples | abundances (reads) | |
$percent | numeric matrix | genera | samples | percentages | ||
$species | $abund | numeric matrix | species | samples | abundances (reads) | |
$percent | numeric matrix | species | samples | percentages | ||
$functions | $KEGG | $abund | numeric matrix | KEGG ids | samples | abundances (reads) |
$bases | numeric matrix | KEGG ids | samples | abundances (bases) | ||
$cov | numeric matrix | KEGG ids | samples | coverages | ||
$cpm | numeric matrix | KEGG ids | samples | covs. / 10^6 reads | ||
$tpm | numeric matrix | KEGG ids | samples | tpm | ||
$copy_number | numeric matrix | KEGG ids | samples | avg. copies | ||
$COG | $abund | numeric matrix | COG ids | samples | abundances (reads) | |
$bases | numeric matrix | COG ids | samples | abundances (bases) | ||
$cov | numeric matrix | COG ids | samples | coverages | ||
$cpm | numeric matrix | COG ids | samples | covs. / 10^6 reads | ||
$tpm | numeric matrix | COG ids | samples | tpm | ||
$copy_number | numeric matrix | COG ids | samples | avg. copies | ||
$PFAM | $abund | numeric matrix | PFAM ids | samples | abundances (reads) | |
$bases | numeric matrix | PFAM ids | samples | abundances (bases) | ||
$cov | numeric matrix | PFAM ids | samples | coverages | ||
$cpm | numeric matrix | PFAM ids | samples | covs. / 10^6 reads | ||
$tpm | numeric matrix | PFAM ids | samples | tpm | ||
$copy_number | numeric matrix | PFAM ids | samples | avg. copies | ||
$total_reads | numeric vector | samples | (n/a) | total reads | ||
$misc | $project_name | character vector | (empty) | (n/a) | project name | |
$samples | character vector | (empty) | (n/a) | samples | ||
$tax_names_long | $superkingdom | character vector | short names | (n/a) | full names | |
$phylum | character vector | short names | (n/a) | full names | ||
$class | character vector | short names | (n/a) | full names | ||
$order | character vector | short names | (n/a) | full names | ||
$family | character vector | short names | (n/a) | full names | ||
$genus | character vector | short names | (n/a) | full names | ||
$species | character vector | short names | (n/a) | full names | ||
$tax_names_short | character vector | full names | (n/a) | short names | ||
$KEGG_names | character vector | KEGG ids | (n/a) | KEGG names | ||
$KEGG_paths | character vector | KEGG ids | (n/a) | KEGG hiararchy | ||
$COG_names | character vector | COG ids | (n/a) | COG names | ||
$COG_paths | character vector | COG ids | (n/a) | COG hierarchy | ||
$ext_annot_sources | character vector | COG ids | (n/a) | external databases | ||
If external databases for functional classification were provided to SqueezeMeta via the -extdb
argument, the corresponding abundance (reads and bases), coverages, tpm and copy number profiles will be present in SQM$functions
(e.g. results for the CAZy database would be present in SQM$functions$CAZy
). Additionally, the extended names of the features present in the external database will be present in SQM$misc
(e.g. SQM$misc$CAZy_names
).
## Not run:
## (outside R)
## Run SqueezeMeta on the test data.
/path/to/SqueezeMeta/scripts/SqueezeMeta.pl -p Hadza -f raw -m coassembly -s test.samples
## Now go into R.
library(SQMtools)
Hadza = loadSQM("Hadza") # Where Hadza is the path to the SqueezeMeta output directory.
## End(Not run)
data(Hadza) # We will illustrate the structure of the SQM object on the test data
# Which are the ten most abundant KEGG IDs in our data?
topKEGG = names(sort(rowSums(Hadza$functions$KEGG$tpm), decreasing=TRUE))[1:11]
topKEGG = topKEGG[topKEGG!="Unclassified"]
# Which functions do those KEGG IDs represent?
Hadza$misc$KEGG_names[topKEGG]
# What is the relative abundance of the Negativicutes class across samples?
Hadza$taxa$class$percent["Negativicutes",]
# Which information is stored in the orf, contig and bin tables?
colnames(Hadza$orfs$table)
colnames(Hadza$contigs$table)
colnames(Hadza$bins$table)
# What is the GC content distribution of my metagenome?
boxplot(Hadza$contigs$table[,"GC perc"]) # Not weighted by contig length or abundance!
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.