View source: R/subset_methods.R
subsetFun | R Documentation |
Create a SQM or SQMbunch object containing only the ORFs with a given function, and the contigs and bins that contain them.
subsetFun(
SQM,
fun,
columns = NULL,
ignore_case = TRUE,
fixed = FALSE,
trusted_functions_only = FALSE,
ignore_unclassified_functions = FALSE,
rescale_tpm = FALSE,
rescale_copy_number = FALSE,
recalculate_bin_stats = FALSE,
allow_empty = FALSE
)
SQM |
SQM or SQMbunch object to be subsetted. |
fun |
character. Pattern to search for in the different functional classifications. |
columns |
character. Restrict the search to the provided column names from |
ignore_case |
logical Make pattern matching case-insensitive (default |
fixed |
logical. If |
trusted_functions_only |
logical. If |
ignore_unclassified_functions |
logical. If |
rescale_tpm |
logical. If |
rescale_copy_number |
logical. If |
recalculate_bin_stats |
logical. If |
allow_empty |
(internal use only). |
SQM or SQMbunch object containing only the requested function.
subsetTax
, subsetORFs
, subsetSamples
, combineSQM
. The most abundant items of a particular table contained in a SQM object can be selected with mostAbundant
.
data(Hadza)
Hadza.iron = subsetFun(Hadza, "iron")
Hadza.carb = subsetFun(Hadza, "Carbohydrate metabolism")
# Search for multiple patterns using regular expressions
Hadza.twoKOs = subsetFun(Hadza, "K00812|K00813", fixed=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.