R/findintercorr_cont.R

Defines functions findintercorr_cont

Documented in findintercorr_cont

#' @title Calculate Intermediate MVN Correlation for Continuous Variables Generated by Polynomial Transformation
#'
#' @description This function finds the roots to the equations in \code{\link[SimMultiCorrData]{intercorr_fleish}} or
#'     \code{\link[SimMultiCorrData]{intercorr_poly}} using \code{\link[nleqslv]{nleqslv}}.  It is used in
#'     \code{\link[SimMultiCorrData]{findintercorr}} and
#'     \code{\link[SimMultiCorrData]{findintercorr2}} to find the intermediate correlation for standard normal random variables
#'     which are used in Fleishman's Third-Order (\doi{10.1007/BF02293811}) or Headrick's Fifth-Order
#'     (\doi{10.1016/S0167-9473(02)00072-5}) Polynomial Transformation.  It works for two or three
#'     variables in the case of \code{method} = "Fleishman", or two, three, or four variables in the case of \code{method} = "Polynomial".
#'     Otherwise, Headrick & Sawilowsky (1999, \doi{10.1007/BF02294317}) recommend using the technique of Vale & Maurelli (1983,
#'     \doi{10.1007/BF02293687}), in which
#'     the intermediate correlations are found pairwise and then eigen value decomposition is used on the intermediate
#'     correlation matrix.  This function would not ordinarily be called by the user.
#' @param method the method used to generate the continuous variables.  "Fleishman" uses Fleishman's third-order polynomial transformation
#'     and "Polynomial" uses Headrick's fifth-order transformation.
#' @param constants a matrix with either 2, 3, or 4 rows, each a vector of constants c0, c1, c2, c3 (if \code{method} = "Fleishman") or
#'     c0, c1, c2, c3, c4, c5 (if \code{method} = "Polynomial"), like that returned by
#'     \code{\link[SimMultiCorrData]{find_constants}}
#' @param rho_cont a matrix of target correlations among continuous variables; if \code{nrow(rho_cont) = 1}, it represents a pairwise
#'     correlation; if \code{nrow(rho_cont) = 2, 3, or 4}, it represents a correlation matrix between two, three, or four variables
#' @import nleqslv
#' @export
#' @keywords intermediate, correlation, continuous, Fleishman, Headrick
#' @seealso \code{\link[SimMultiCorrData]{poly}}, \code{\link[SimMultiCorrData]{fleish}}, \code{\link[SimMultiCorrData]{power_norm_corr}},
#'     \code{\link[SimMultiCorrData]{pdf_check}}, \code{\link[SimMultiCorrData]{find_constants}},
#'     \code{\link[SimMultiCorrData]{intercorr_fleish}}, \cr
#'     \code{\link[SimMultiCorrData]{intercorr_poly}}, \code{\link[nleqslv]{nleqslv}}
#' @return a list containing the results from \code{\link[nleqslv]{nleqslv}}
#' @references
#' Fleishman AI (1978). A Method for Simulating Non-normal Distributions. Psychometrika, 43, 521-532. \doi{10.1007/BF02293811}.
#'
#' Hasselman B (2018). nleqslv: Solve Systems of Nonlinear Equations. R package version 3.3.2.
#'     \url{https://CRAN.R-project.org/package=nleqslv}
#'
#' Headrick TC (2002). Fast Fifth-order Polynomial Transforms for Generating Univariate and Multivariate
#'     Non-normal Distributions. Computational Statistics & Data Analysis, 40(4):685-711. \doi{10.1016/S0167-9473(02)00072-5}.
#'     (\href{http://www.sciencedirect.com/science/article/pii/S0167947302000725}{ScienceDirect})
#'
#' Headrick TC (2004). On Polynomial Transformations for Simulating Multivariate Nonnormal Distributions.
#'     Journal of Modern Applied Statistical Methods, 3(1), 65-71. \doi{10.22237/jmasm/1083370080}.
#'
#' Headrick TC, Kowalchuk RK (2007). The Power Method Transformation: Its Probability Density Function, Distribution
#'     Function, and Its Further Use for Fitting Data. Journal of Statistical Computation and Simulation, 77, 229-249. \doi{10.1080/10629360600605065}.
#'
#' Headrick TC, Sawilowsky SS (1999). Simulating Correlated Non-normal Distributions: Extending the Fleishman Power
#'     Method. Psychometrika, 64, 25-35. \doi{10.1007/BF02294317}.
#'
#' Headrick TC, Sheng Y, & Hodis FA (2007). Numerical Computing and Graphics for the Power Method Transformation Using
#'     Mathematica. Journal of Statistical Software, 19(3), 1 - 17. \doi{10.18637/jss.v019.i03}.
#'
#' Vale CD & Maurelli VA (1983). Simulating Multivariate Nonnormal Distributions. Psychometrika, 48, 465-471. \doi{10.1007/BF02293687}.
#'
findintercorr_cont <- function(method = c("Fleishman", "Polynomial"),
                               constants, rho_cont) {
  if (method == "Fleishman") {
    if (nrow(rho_cont) == 1) {
      xguess <- rho_cont[1, 1]
    }
    if (nrow(rho_cont) == 2) {
      xguess <- rho_cont[1, 2]
    }
    if (nrow(rho_cont) == 3) {
      xguess <- c(rho_cont[1, 2], rho_cont[1, 3], rho_cont[2, 3])
    }
    return(nleqslv(x = xguess, intercorr_fleish, c = constants, a = rho_cont,
                   method = "Broyden",
                   control = list(ftol = 1e-5)))
  }
  if (method == "Polynomial") {
    if (nrow(rho_cont) == 1) {
      xguess <- rho_cont[1, 1]
    }
    if (nrow(rho_cont) == 2) {
      xguess <- rho_cont[1, 2]
    }
    if (nrow(rho_cont) == 3) {
      xguess <- c(rho_cont[1, 2], rho_cont[1, 3], rho_cont[2, 3])
    }
    if (nrow(rho_cont) == 4) {
      xguess <- c(rho_cont[1, 2], rho_cont[1, 3], rho_cont[2, 3],
                  rho_cont[1, 4], rho_cont[2, 4], rho_cont[3, 4])
    }
    return(nleqslv(x = xguess, intercorr_poly, c = constants, a = rho_cont,
                   method = "Broyden",
                   control = list(ftol = 1e-5)))
  }
}

Try the SimMultiCorrData package in your browser

Any scripts or data that you put into this service are public.

SimMultiCorrData documentation built on May 2, 2019, 9:50 a.m.