Nothing
#' @title Calculate Intermediate MVN Correlation for Poisson - Negative Binomial Variables: Correlation Method 1
#'
#' @description This function calculates a \code{k_pois x k_nb} intermediate matrix of correlations for the
#' Poisson and Negative Binomial variables by extending the method of Yahav & Shmueli (2012, \doi{10.1002/asmb.901}). The intermediate correlation
#' between Z1 and Z2 (the standard normal variables used to generate the Poisson and Negative Binomial variables Y1 and Y2
#' via the inverse cdf method) is calculated using a logarithmic transformation of the target correlation.
#' First, the upper and lower Frechet-Hoeffding bounds (mincor, maxcor) on \eqn{\rho_{y1,y2}} are simulated.
#' Then the intermediate correlation is found as follows:
#' \deqn{\rho_{z1,z2} = (1/b) * log((\rho_{y1,y2} - c)/a)}, where \eqn{a = -(maxcor * mincor)/(maxcor + mincor)},
#' \eqn{b = log((maxcor + a)/a)}, and \eqn{c = -a}. The function adapts code from Amatya & Demirtas' (2016) package
#' \code{\link[PoisNor]{PoisNor-package}} by:
#'
#' 1) allowing specifications for the number of random variates and the seed for reproducibility
#'
#' 2) providing the following checks: if \eqn{\rho_{z1,z2}} >= 1, \eqn{\rho_{z1,z2}} is set to 0.99; if \eqn{\rho_{z1,z2}} <= -1,
#' \eqn{\rho_{z1,z2}} is set to -0.99
#'
#' 3) simulating Negative Binomial variables.
#' The function is used in \code{\link[SimMultiCorrData]{findintercorr}} and \code{\link[SimMultiCorrData]{rcorrvar}}.
#' This function would not ordinarily be called by the user.
#'
#' @param rho_pois_nb a \code{k_pois x k_nb} matrix of target correlations
#' @param lam a vector of lambda (> 0) constants for the Poisson variables (see \code{\link[stats]{Poisson}})
#' @param size a vector of size parameters for the Negative Binomial variables (see \code{\link[stats]{NegBinomial}})
#' @param prob a vector of success probability parameters
#' @param mu a vector of mean parameters (*Note: either \code{prob} or \code{mu} should be supplied for all Negative Binomial variables,
#' not a mixture; default = NULL)
#' @param nrand the number of random numbers to generate in calculating the bound (default = 10000)
#' @param seed the seed used in random number generation (default = 1234)
#' @import stats
#' @import utils
#' @export
#' @keywords intermediate, correlation, Poisson, Negative Binomial, method 1
#' @seealso \code{\link[PoisNor]{PoisNor-package}}, \code{\link[SimMultiCorrData]{findintercorr_pois}},
#' \code{\link[SimMultiCorrData]{findintercorr_nb}},
#' \code{\link[SimMultiCorrData]{findintercorr}}, \code{\link[SimMultiCorrData]{rcorrvar}}
#' @return the \code{k_pois x k_nb} intermediate correlation matrix whose rows represent the \code{k_pois} Poisson variables and
#' columns represent the \code{k_nb} Negative Binomial variables
#' @references Please see references for \code{\link[SimMultiCorrData]{findintercorr_pois}}.
#'
findintercorr_pois_nb <- function(rho_pois_nb, lam, size, prob, mu = NULL,
nrand = 100000, seed = 1234) {
set.seed(seed)
u <- runif(nrand, 0, 1)
Sigma_pois_nb <- matrix(1, nrow(rho_pois_nb), ncol(rho_pois_nb))
for (i in 1:nrow(rho_pois_nb)) {
for (j in 1:ncol(rho_pois_nb)) {
if (length(prob > 0)) {
maxcor <- cor(qpois(u, lam[i]), qnbinom(u, size[j], prob[j]))
mincor <- cor(qpois(u, lam[i]), qnbinom(1 - u, size[j], prob[j]))
}
if (length(mu > 0)) {
maxcor <- cor(qpois(u, lam[i]), qnbinom(u, size[j], mu = mu[j]))
mincor <- cor(qpois(u, lam[i]), qnbinom(1 - u, size[j], mu = mu[j]))
}
a <- -(maxcor * mincor)/(maxcor + mincor)
b <- log((maxcor + a)/a)
c <- -a
Sigma_pois_nb[i, j] <- (1/b) * log((rho_pois_nb[i, j] - c)/a)
if(Sigma_pois_nb[i, j] >= 1) {
Sigma_pois_nb[i, j] <- 0.99
}
if(Sigma_pois_nb[i, j] <= -1) {
Sigma_pois_nb[i, j] <- -0.99
}
}
}
return(Sigma_pois_nb)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.