Nothing
## ---- echo = FALSE-------------------------------------------------------
knitr::opts_chunk$set(fig.width = 6, fig.height = 4.5)
## ---- warning = FALSE, message = FALSE-----------------------------------
library("SimMultiCorrData")
library("printr")
stcums <- calc_theory(Dist = "Exponential", params = 0.5)
## ---- warning = FALSE, message = FALSE-----------------------------------
H_exp <- nonnormvar1("Polynomial", means = stcums[1], vars = stcums[2]^2,
skews = stcums[3], skurts = stcums[4],
fifths = stcums[5], sixths = stcums[6], n = 10000,
seed = 1234)
## ------------------------------------------------------------------------
as.matrix(H_exp$constants, nrow = 1, ncol = 6, byrow = TRUE)
## ------------------------------------------------------------------------
as.matrix(round(H_exp$summary_targetcont[, c("Distribution", "mean", "sd",
"skew", "skurtosis", "fifth",
"sixth")], 5), nrow = 1, ncol = 7,
byrow = TRUE)
## ------------------------------------------------------------------------
as.matrix(round(H_exp$summary_continuous[, c("Distribution", "mean", "sd",
"skew", "skurtosis", "fifth",
"sixth")], 5), nrow = 1, ncol = 7,
byrow = TRUE)
## ------------------------------------------------------------------------
H_exp$valid.pdf
## ------------------------------------------------------------------------
y_star <- qexp(1 - 0.05, rate = 0.5) # note that rate = 1/mean
y_star
## ------------------------------------------------------------------------
f_exp <- function(z, c, y) {
return(2 * (c[1] + c[2] * z + c[3] * z^2 + c[4] * z^3 + c[5] * z^4 +
c[6] * z^5) + 2 - y)
}
z_prime <- uniroot(f_exp, interval = c(-1e06, 1e06),
c = as.numeric(H_exp$constants), y = y_star)$root
z_prime
## ------------------------------------------------------------------------
1 - pnorm(z_prime)
## ---- warning = FALSE, message = FALSE-----------------------------------
plot_sim_pdf_theory(sim_y = H_exp$continuous_variable[, 1],
Dist = "Exponential", params = 0.5)
## ---- warning = FALSE, message = FALSE-----------------------------------
plot_sim_cdf(sim_y = H_exp$continuous_variable[, 1], calc_cprob = TRUE,
delta = y_star)
## ---- warning = FALSE, message = FALSE-----------------------------------
as.matrix(t(stats_pdf(c = H_exp$constants[1, ], method = "Polynomial",
alpha = 0.025, mu = stcums[1], sigma = stcums[2])))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.