Nothing
## ----setup, include=FALSE, cache=FALSE, echo=FALSE, message=FALSE-------------
require(knitr)
opts_chunk$set(
dev="pdf",
fig.path="figures/",
fig.height=3,
fig.width=4,
out.width=".47\\textwidth",
fig.keep="high",
fig.show="hold",
fig.align="center",
prompt=TRUE, # show the prompts; but perhaps we should not do this
comment=NA # turn off commenting of ouput (but perhaps we should not do this either
)
require(Sleuth3)
require(mosaic)
trellis.par.set(theme=col.mosaic()) # get a better color scheme for lattice
set.seed(123)
# this allows for code formatting inline. Use \Sexpr{'function(x,y)'}, for exmaple.
knit_hooks$set(inline = function(x) {
if (is.numeric(x)) return(knitr:::format_sci(x, 'latex'))
x = as.character(x)
h = knitr:::hilight_source(x, 'latex', list(prompt=FALSE, size='normalsize'))
h = gsub("([_#$%&])", "\\\\\\1", h)
h = gsub('(["\'])', '\\1{}', h)
gsub('^\\\\begin\\{alltt\\}\\s*|\\\\end\\{alltt\\}\\s*$', '', h)
})
showOriginal=FALSE
showNew=TRUE
## ----pvalues, echo=FALSE, message=FALSE---------------------------------------
print.pval = function(pval) {
threshold = 0.0001
return(ifelse(pval < threshold, paste("p<", sprintf("%.4f", threshold), sep=""),
ifelse(pval > 0.1, paste("p=",round(pval, 2), sep=""),
paste("p=", round(pval, 3), sep=""))))
}
## ----install_mosaic,eval=FALSE------------------------------------------------
# install.packages('mosaic') # note the quotation marks
## ----load_mosaic,eval=FALSE---------------------------------------------------
# require(mosaic)
## ----install_Sleuth3,eval=FALSE-----------------------------------------------
# install.packages('Sleuth3') # note the quotation marks
## ----load_Sleuth3,eval=FALSE--------------------------------------------------
# require(Sleuth3)
## ----eval=TRUE----------------------------------------------------------------
trellis.par.set(theme=col.mosaic()) # get a better color scheme for lattice
options(digits=4)
## -----------------------------------------------------------------------------
summary(case0701)
## -----------------------------------------------------------------------------
histogram(~ Velocity, type='density', density=TRUE, nint=10, data=case0701)
histogram(~ Distance, type='density', density=TRUE, nint=10, data=case0701)
## -----------------------------------------------------------------------------
xyplot(Distance ~ Velocity, type=c("p", "r"), data=case0701)
## -----------------------------------------------------------------------------
lm1 = lm(Distance ~ Velocity, data=case0701)
summary(lm1)
## -----------------------------------------------------------------------------
fitted(lm1)
resid(lm1)^2
sum(resid(lm1)^2)
sum(resid(lm1)^2)/sum((fitted(lm1)-mean(~Distance, data=case0701))^2)
## ----fig.width=6, fig.height=4.5----------------------------------------------
xyplot(Distance ~ Velocity, panel=panel.lmbands, data=case0701)
## -----------------------------------------------------------------------------
# linear regression with no intercept
lm2 = lm(Distance ~ Velocity-1, data=case0701)
summary(lm2)
confint(lm2)
## -----------------------------------------------------------------------------
summary(case0702)
## -----------------------------------------------------------------------------
logtime = log(case0702$Time)
xyplot(pH ~ logtime, data=case0702)
## -----------------------------------------------------------------------------
lm3 = lm(pH ~ logtime, data=case0702)
summary(lm3)
beta0 = coef(lm3)["(Intercept)"]; beta0
beta1 = coef(lm3)["logtime"]; beta1
sigma = summary(lm3)$sigma; sigma
## -----------------------------------------------------------------------------
mu = beta0+beta1*log(4); mu
n = nrow(case0702)
mean = mean(~logtime, data=case0702)
sd = sd(~logtime, data=case0702)
se = sigma*sqrt(1/n+(log(4)-mean)^2/((n-1)*sd)); se
upper = mu+qt(0.975, df=8)*se; upper
lower = mu-qt(0.975, df=8)*se; lower
## -----------------------------------------------------------------------------
predict(lm3, interval="confidence")[5,]
## -----------------------------------------------------------------------------
pred = beta0+beta1*log(4); pred
predse = sigma*sqrt(1+1/n+(log(4)-mean)^2/((n-1)*sd)); predse
predupper = pred+qt(0.975, df=8)*predse; predupper
predlower = pred-qt(0.975, df=8)*predse; predlower
## ----message=FALSE------------------------------------------------------------
predict(lm3, interval="prediction")[5,]
## ----fig.width=8, fig.height=6, message=FALSE---------------------------------
xyplot(pH ~ logtime, abline=(h=6), data=case0702, panel=panel.lmbands)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.