Nothing
SpATS <-
function(response, genotype, geno.decomp = NULL, genotype.as.random = FALSE, spatial, fixed = NULL, random = NULL, data, family = gaussian(), offset = 0, weights = NULL, control = controlSpATS()) {
control <- do.call("controlSpATS", control)
if (control$monitoring) start = proc.time()[3]
if (is.character(family))
family <- get(family, mode = "function", envir = parent.frame())
if (is.function(family))
family <- family()
if (is.null(family$family)) {
print(family)
stop("'family' not recognized")
}
if (inherits(data, what = 'data.frame')) {
data <- as.data.frame(data)
} else {
stop("The object specified in argument 'data' is not a data frame")
}
weights <- as.vector(weights)
if(is.null(weights)) weights = rep(1, nrow(data))
if(length(offset) == 1) offset <- rep(offset, nrow(data))
if(inherits(fixed, "character"))
fixed <- as.formula(fixed)
if(inherits(random, "character"))
random <- as.formula(random)
if(inherits(spatial, "character"))
spatial <- as.formula(spatial)
if(!all(sapply(all.vars(random), function(x, data) is.factor(data[,x]), data = data))) {
stop("All variables indicated in argument 'random' should be factors")
}
if(any(sapply(all.vars(fixed), function(x, data) is.character(data[,x]), data = data))) {
stop("Variables indicated in argument 'fixed' cannot be characters")
}
sf <- interpret.SpATS.formula(spatial)
# NAs in the covariates
model.terms <- c(sf$x.coord, sf$y.coord, if(genotype.as.random) geno.decomp else genotype, if(!is.null(fixed)) all.vars(fixed))
na.ind <- apply(is.na(data[,model.terms]), 1, any)
na.pos <- (1:nrow(data))[!na.ind]
weights <- weights*(!na.ind)*(!is.na(data[,response]))
data.na <- data[!na.ind,]
weights.na <- weights[!na.ind]
offset.na <- offset[!na.ind]
na.res <- is.na(data.na[,response])
y <- data.na[,response]
nobs <- length(y[weights.na != 0])
MM <- construct.design.matrix(genotype = genotype, geno.decomp = geno.decomp, grandom = genotype.as.random, spatial = spatial, fixed = fixed, random = random, data = data.na, weights = weights.na, na.res = na.res)
MMs <- MM$MM$MMs
MMns <- MM$MM$MMns
geno.part <- MM$geno.part
ldim <- MM$dim
random. <- unlist(lapply(ldim, get.attribute, "random"))
sparse. <- unlist(lapply(ldim, get.attribute, "sparse"))
spatial. <- unlist(lapply(ldim, get.attribute, "spatial"))
dim <- unlist(ldim)
# Nominal dimension
dim.nom <- obtain.nominal.dimension(cbind(MM$MM$MMs, MM$MM$MMns), dim, random., spatial., weights.na)
g <- MM$g
random.pos <- create.position.indicator(dim, random.)
df.fixed <- sum(dim[!random.])
# Fixed and random effects
# bold = rep(0, sum(dim, na.rm = TRUE))
# Fit the model
# eta <- cbind.spam(MMs, MMns)%*%bold + offset.na
# mu <- family$linkinv(eta)
mustart <- etastart <- NULL
eval(family$initialize)
mu <- mustart
eta <- family$linkfun(mustart)
# Initialize variance components
la <- c(1, unlist(MM$init.var))
# Initialize deviance and psi
devold <- 1e10
psi <- la[1]
if(control$monitoring > 1) {
cat("Effective dimensions\n")
cat("-------------------------\n")
cat(sprintf("%1$3s %2$12s","It.","Deviance"), sep = "")
cat(sprintf("%12s", names(g)), sep = "")
cat("\n")
}
for (iter in 1:control$maxit) {
deriv <- family$mu.eta(eta)
z <- (eta - offset.na) + (y - mu)/deriv
w <- as.vector(deriv^2/family$variance(mu))
w <- w*weights.na
z[!weights.na] <- 0
mat <- construct.matrices(MMs, MMns, z, w)
if(!genotype.as.random) {
M <- t((1/mat$XtX.)%*%mat$XtZ.)
C21_C11_inv_C12 <- M%*%mat$XtZ.
M_Xty. <- M%*%mat$Xty.
}
if(control$monitoring) start1 <- proc.time()[3]
for (it in 1:control$maxit) {
# Build penalty matrix: block diagonal matrix
Ginv <- vector(length = sum(dim[random.], na.rm = TRUE))
for (i in 1:length(g)) {
Ginv <- Ginv + (1/la[i+1])*g[[i]]
}
G <- 1/Ginv
obj <- construct.henderson.matrix(mat, la, Ginv, dim, sparse., random., fixed.matrices = if(genotype.as.random) NULL else list(M = M, C21_C11_inv_C12 = C21_C11_inv_C12, M_Xty. = M_Xty.), as.random = genotype.as.random)
# Fixed and random effects estimation
chol_K <- try(chol(obj$K), silent = TRUE)
if(inherits(chol_K, "try-error")) {
stop("The design matrix associated to the fixed part of the model is not of full rank. Please check that there are no redundant components in the fixed part of the model.")
}
K_inv <- chol2inv(chol_K)
b.fr <- (1/la[1])*K_inv%*%(mat$Zty. - obj$M_Xty.)
b.fr <- as.vector(b.fr)
names(b.fr) <- colnames(MMns)
b.geno <- as.vector(obj$A_inv%*%((1/la[1])*mat$Xty. - obj$C12%*%b.fr))
names(b.geno) <- attr(MMs, "colnames")
b <- c(b.geno, b.fr)
b.random <- b[random.pos]
# Variance components and effective dimensions
hat_inverses <- compute.hat.diagonal(mat, la, obj$A_inv, K_inv, obj$M, Ginv, dim, sparse., random., as.random = genotype.as.random)
dZtPZ <- hat_inverses$dZtPZ
ed <- tau <- vector(mode="list")
for (i in 1:length(g)) {
g.inv.d <- (1/la[i+1])*g[[i]]
ed[[i]] <- sum(dZtPZ*(g.inv.d*G^2))
ed[[i]] <- ifelse(ed[[i]] == 0, 1e-50, ed[[i]])
tau[[i]] <- sum(b.random^2*g[[i]])/ed[[i]]
tau[[i]] <- ifelse(tau[[i]] == 0, 1e-50, tau[[i]])
}
#ssr = sum(((z - cbind(MMs, MMns)%*%b)*sqrt(w))^2) #yty. - t(b)%*%(2*u - V%*%b)
ssr <- sum(((z - MMs %*% b.geno - MMns %*% b.fr)*sqrt(w))^2) #yty. - t(b)%*%(2*u - V%*%b)
# Compute deviance
dev <- deviance(obj$C11, chol_K, G, w[w != 0], la[1], ssr, sum(b.random^2*Ginv))
psinew <- as.numeric((ssr/(nobs - sum(unlist(ed)) - df.fixed)))
if((family$family == "gaussian" & control$update.psi.gauss) | control$update.psi) {
psi2 <- psinew
} else {
psi2 <- 1
}
# New variance components and convergence check
lanew <- c(psi2, unlist(tau))
dla <- abs(devold - dev)
if(control$monitoring > 1) {
cat(sprintf("%1$3d %2$12.6f", it, dev), sep = "")
cat(sprintf("%12.3f", unlist(ed)), sep = "")
cat('\n')
}
if (dla < control$tolerance) break
la <- lanew
psi <- psinew
devold <- dev
}
if (control$monitoring) {
end1 <- proc.time()[3]
cat("Timings:\nSpATS", (end1-start1), "seconds\n")
}
eta.old <- eta
eta <- cbind.spam(MMs, MMns)%*%b + offset.na
mu <- family$linkinv(eta)
# Convergence criterion: linear predictor
tol <- sum((eta - eta.old)^2)/sum(eta^2)
if (tol < control$tolerance | (family$family == "gaussian" & family$link== "identity")) break
}
# Inverses
C11_inv <- as.matrix(obj$A_inv - hat_inverses$C12_inv%*%obj$M)
C12_inv <- as.matrix(hat_inverses$C12_inv)
C21_inv <- as.matrix(hat_inverses$C21_inv)
C22_inv <- as.matrix(hat_inverses$C22_inv)
colnames(C11_inv) <- rownames(C11_inv) <- rownames(C12_inv) <- colnames(C21_inv) <- names(b.geno)
colnames(C22_inv) <- rownames(C22_inv) <- colnames(C12_inv) <- rownames(C21_inv) <- names(b.fr)
var.comp <- la[-1]
eff.dim <- unlist(ed)
names(var.comp) <- names(eff.dim) <- names(g)
# Effective dimension (fixed + random)
eff.dim <- c(dim[!random.], eff.dim)
attr(dim, "random") <- random.
attr(dim, "sparse") <- sparse.
attr(dim, "spatial") <- spatial.
fitted <- rep(NA, nrow(data))
fitted[!na.ind] <- mu
# Deviance residuals
dev.residuals <- family$dev.resids(data[,response], fitted, weights)
s <- attr(dev.residuals, "sign")
if (is.null(s))
s <- sign(data[,response] - fitted)
dev.residuals <- sqrt(pmax(dev.residuals, 0))*s
if (control$monitoring) {
end <- proc.time()[3]
cat("All process", (end - start), "seconds\n")
}
res <- list()
res$call <- match.call()
res$data <- cbind(data, weights = weights)
res$model <- list(response = response, spatial = spatial, geno = list(genotype = genotype, geno.decomp = geno.decomp, as.random = genotype.as.random), fixed = fixed, random = random)
res$fitted <- fitted
res$residuals <- dev.residuals
res$psi <- c(la[1], psi)
res$var.comp <- var.comp
res$eff.dim <- eff.dim
res$dim <- dim
res$dim.nom <- dim.nom
res$nobs <- nobs
res$deviance <- dev
res$coeff <- b
res$niterations <- it
random.coeff <- rep(FALSE, length(b))
random.coeff[create.position.indicator(dim, random.)] <- TRUE
attr(res$coeff, "random") <- random.coeff
# Terms
res$terms <- MM$terms
# vcov
res$vcov <- list(C11_inv = C11_inv, C12_inv = C12_inv, C21_inv = C21_inv, C22_inv = C22_inv)
class(res) <- "SpATS"
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.