Nothing
##This file contains all the function to fit the max-stable
##characterisation of Schlather
##This functions fits the model without any spatial structure for the
##GEV parameters. Thus, each GEV parameters are estimated at each
##location. However, if fit.marge = FALSE, observation are supposed to
##be unit Frechet and only the covariance function parameters are
##estimated.
schlatherfull <- function(data, coord, start, cov.mod = "whitmat", ...,
fit.marge = FALSE, warn = TRUE, method = "BFGS",
control = list(), corr = FALSE,
weights = NULL, check.grad = FALSE){
##data is a matrix with each column corresponds to one location
##locations is a matrix giving the coordinates (1 row = 1 station)
n.site <- ncol(data)
n.obs <- nrow(data)
dist.dim <- ncol(coord)
n.pairs <- n.site * (n.site - 1) / 2
dist <- distance(coord)
weighted <- !is.null(weights)
if (!weighted)
##Set the weights to 0 as it won't be used anyway
weights <- 0
if (!(cov.mod %in% c("whitmat","cauchy","powexp","bessel","caugen")))
stop("''cov.mod'' must be one of 'whitmat', 'cauchy', 'powexp', 'bessel', 'caugen'")
if (cov.mod == "whitmat")
cov.mod.num <- 1
if (cov.mod == "cauchy")
cov.mod.num <- 2
if (cov.mod == "powexp")
cov.mod.num <- 3
if (cov.mod == "bessel")
cov.mod.num <- 4
if (cov.mod == "caugen")
cov.mod.num <- 5
param <- c("nugget", "range", "smooth")
if (cov.mod == "caugen")
param <- c(param, "smooth2")
else
##Fix it to 0 as it won't be used anyway
smooth2 <- 0
if (fit.marge){
loc.names <- paste("loc", 1:n.site, sep="")
scale.names <- paste("scale", 1:n.site, sep="")
shape.names <- paste("shape", 1:n.site, sep="")
param <- c(param, loc.names, scale.names, shape.names)
}
else
loc.names <- scale.names <- shape.names <- rep(1, n.site)
##First create a "void" function
nplk <- function(x) x
##And define the "body" of the function as the number of parameters
##to estimate depends on n.site
body(nplk) <- parse(text = paste("-.C(C_schlatherfull, as.integer(cov.mod.num), as.double(data), as.double(dist), as.integer(n.site), as.integer(n.obs), as.integer(dist.dim), as.integer(weighted), as.double(weights),",
paste("as.double(c(", paste(loc.names, collapse = ","), ")), "),
paste("as.double(c(", paste(scale.names, collapse = ","), ")), "),
paste("as.double(c(", paste(shape.names, collapse = ","), ")), "),
"as.double(nugget), as.double(range), as.double(smooth), as.double(smooth2), fit.marge, dns = double(1), NAOK = TRUE)$dns"))
fixed.param <- list(...)[names(list(...)) %in% param]
##Define the formal arguments of the function
form.nplk <- NULL
for (i in 1:length(param))
form.nplk <- c(form.nplk, alist(a=))
names(form.nplk) <- param
formals(nplk) <- form.nplk
if (missing(start)) {
start <- list()
if (fit.marge){
locs <- scales <- rep(NA, n.site)
shapes <- rep(0, n.site)
for (i in 1:n.site){
marg.param <- gevmle(data[,i])
locs[i] <- marg.param["loc"]
scales[i] <- marg.param["scale"]
shapes[i] <- marg.param["shape"]
}
start <- as.list(unlist(list(loc = locs, scale = scales, shape = shapes)))
}
if (length(fixed.param) > 0){
args <- c(list(data = data, coord = coord, cov.mod = cov.mod, marge = "emp"), fixed.param)
cov.start <- do.call("fitcovariance", args)$param
}
else
cov.start <- fitcovariance(data, coord, cov.mod, marge = "emp")$param
start <- c(as.list(cov.start), start)
start <- start[!(param %in% names(list(...)))]
}
if (!is.list(start))
stop("'start' must be a named list")
if (!length(start))
stop("there are no parameters left to maximize over")
nm <- names(start)
l <- length(nm)
f <- formals(nplk)
names(f) <- param
m <- match(nm, param)
if(any(is.na(m)))
stop("'start' specifies unknown arguments")
formals(nplk) <- c(f[m], f[-m])
nllh <- function(p, ...) nplk(p, ...)
if(l > 1)
body(nllh) <- parse(text = paste("nplk(", paste("p[",1:l,
"]", collapse = ", "), ", ...)"))
if(any(!(param %in% c(nm,names(fixed.param)))))
stop("unspecified parameters")
start.arg <- c(list(p = unlist(start)), fixed.param)
init.lik <- do.call("nllh", start.arg)
if (warn && (init.lik >= 1.0e15))
warning("negative log-likelihood is infinite at starting values")
if (method == "nlminb"){
start <- as.numeric(start)
opt <- nlminb(start, nllh, ..., control = control)
opt$counts <- opt$evaluations
opt$value <- opt$objective
names(opt$par) <- nm
if ((opt$convergence != 0) || (opt$value >= 1.0e15)) {
if (warn)
warning("optimization may not have succeeded")
}
if (opt$convergence == 0)
opt$convergence <- "successful"
}
if (method == "nlm"){
start <- as.numeric(start)
opt <- nlm(nllh, start, ...)
opt$counts <- opt$iterations
names(opt$counts) <- "function"
opt$value <- opt$minimum
opt$par <- opt$estimate
names(opt$par) <- nm
if (opt$code <= 2)
opt$convergence <- "sucessful"
if (opt$code == 3)
opt$convergence <- "local minimum or 'steptol' is too small"
if (opt$code == 4)
opt$convergence <- "iteration limit reached"
if (opt$code == 5)
opt$convergence <- "optimization failed"
}
if (!(method %in% c("nlm", "nlminb"))){
opt <- optim(start, nllh, ..., method = method, control = control)
if ((opt$convergence != 0) || (opt$value >= 1.0e15)) {
if (warn)
warning("optimization may not have succeeded")
if (opt$convergence == 1)
opt$convergence <- "iteration limit reached"
}
else opt$convergence <- "successful"
}
if (opt$value == init.lik){
if (warn)
warning("optimization stayed at the starting values.")
opt$convergence <- "Stayed at start. val."
}
param.names <- param
param <- c(opt$par, unlist(fixed.param))
param <- param[param.names]
##Reset the weights to their original values
if ((length(weights) == 1) && (weights == 0))
weights <- NULL
std.err <- .schlatherstderr(param, data, dist, cov.mod.num, as.double(0),
as.double(0), as.double(0), as.double(0), as.double(0),
as.double(0), rep(FALSE, 3), fit.marge = fit.marge,
fixed.param = names(fixed.param),
param.names = param.names, weights = weights)
if (check.grad)
print(round(rbind(numerical = -opt$grad, analytical = std.err$grad), 3))
opt$hessian <- std.err$hessian
var.score <- std.err$var.score
ihessian <- try(solve(opt$hessian), silent = TRUE)
if(!is.matrix(ihessian) || any(is.na(var.score))){
if (warn)
warning("Observed information matrix is singular. No standard error will be computed.")
std.err.type <- "none"
}
else{
std.err.type <- "yes"
var.cov <- ihessian %*% var.score %*% ihessian
std.err <- diag(var.cov)
std.idx <- which(std.err <= 0)
if(length(std.idx) > 0){
if (warn)
warning("Some (observed) standard errors are negative;\n passing them to NA")
std.err[std.idx] <- NA
}
std.err <- sqrt(std.err)
if(corr) {
.mat <- diag(1/std.err, nrow = length(std.err))
corr.mat <- structure(.mat %*% var.cov %*% .mat, dimnames = list(nm,nm))
diag(corr.mat) <- rep(1, length(std.err))
}
else
corr.mat <- NULL
colnames(var.cov) <- rownames(var.cov) <- colnames(ihessian) <-
rownames(ihessian) <- names(std.err) <- nm
}
if (std.err.type == "none"){
std.err <- std.err.type <- corr.mat <- NULL
var.cov <- ihessian <- var.score <- NULL
}
if (cov.mod == "caugen")
cov.fun <- covariance(nugget = param["nugget"], sill = 1 - param["nugget"], range = param["range"],
smooth = param["smooth"], smooth2 = param["smooth2"],
cov.mod = cov.mod, plot = FALSE)
else
cov.fun <- covariance(nugget = param["nugget"], sill = 1 - param["nugget"], range = param["range"],
smooth = param["smooth"], cov.mod = cov.mod,
plot = FALSE)
ext.coeff <- function(h)
1 + sqrt(0.5 - 0.5 * cov.fun(h))
conc.prob <- function(h){
n.sim <- 20000
n.site <- length(h)
rho <- cov.fun(h)
rho <- matrix(rho, 2 * n.sim, n.site, byrow = TRUE)
Y <- sqrt(2 * pi) * rgp(n.sim, h, cov.mod, nugget = param["nugget"], sill = 1 - param["nugget"],
range = param["range"], smooth = param["smooth"])
Y <- rbind(pmax(Y, 0), pmax(-Y, 0))##antithetic
dummy <- 1 / (0.5 * (1/Y[,1] + 1 / Y) * (1 + sqrt(1 - 2 * (1 + rho) *
Y[,1] * Y / (Y[,1] + Y)^2)))
dummy <- replace(dummy, is.na(dummy), 0)
colMeans(dummy)
}
fitted <- list(fitted.values = opt$par, std.err = std.err,
var.cov = var.cov, param = param, cov.fun = cov.fun, fixed = unlist(fixed.param),
deviance = 2*opt$value, corr = corr.mat, convergence = opt$convergence,
counts = opt$counts, message = opt$message, est = "MPLE", data = data,
logLik = -opt$value, opt.value = opt$value, model = "Schlather", iso = TRUE,
cov.mod = cov.mod, fit.marge = fit.marge, ext.coeff = ext.coeff,
hessian = opt$hessian, lik.fun = nllh, coord = coord, ihessian = ihessian,
var.score = var.score, marg.cov = NULL, nllh = nllh, weighted = weighted,
conc.prob = conc.prob)
class(fitted) <- c(fitted$model, "maxstab")
return(fitted)
}
##This functions fits the model from a generic R formula
##i.e. classical linear models as well as smoothing splines with
##radial basis functions may be used to model spatially the GEV
##parameters
schlatherform <- function(data, coord, cov.mod, loc.form, scale.form, shape.form,
start, fit.marge = TRUE, marg.cov = NULL, ...,
warn = TRUE, method = "BFGS", control = list(),
corr = FALSE, weights = NULL,
temp.cov = NULL, temp.form.loc = NULL, temp.form.scale = NULL,
temp.form.shape = NULL, check.grad = FALSE){
##data is a matrix with each column corresponds to one location
##coord is a matrix giving the coordinates (1 row = 1 station)
n.site <- ncol(data)
n.obs <- nrow(data)
dist.dim <- ncol(coord)
n.pair <- n.site * (n.site - 1) / 2
dist <- distance(coord)
weighted <- !is.null(weights)
if (!weighted)
##Set the weights to 0 as it won't be used anyway
weights <- 0
use.temp.cov <- c(!is.null(temp.form.loc), !is.null(temp.form.scale), !is.null(temp.form.shape))
if (any(use.temp.cov) && (n.obs != nrow(temp.cov)))
stop("'data' and 'temp.cov' doesn't match")
if (any(use.temp.cov) && is.null(temp.cov))
stop("'temp.cov' must be supplied if at least one temporal formula is given")
if (!(cov.mod %in% c("whitmat","cauchy","powexp","bessel","caugen")))
stop("''cov.mod'' must be one of 'whitmat', 'cauchy', 'powexp', 'bessel', 'caugen'")
if (cov.mod == "whitmat")
cov.mod.num <- 1
if (cov.mod == "cauchy")
cov.mod.num <- 2
if (cov.mod == "powexp")
cov.mod.num <- 3
if (cov.mod == "bessel")
cov.mod.num <- 4
if (cov.mod == "caugen")
cov.mod.num <- 5
##With our notation, formula must be of the form y ~ xxxx
loc.form <- update(loc.form, y ~ .)
scale.form <- update(scale.form, y ~ .)
shape.form <- update(shape.form, y ~ .)
if (use.temp.cov[1])
temp.form.loc <- update(temp.form.loc, y ~. + 0)
if (use.temp.cov[2])
temp.form.scale <- update(temp.form.scale, y ~. + 0)
if (use.temp.cov[3])
temp.form.shape <- update(temp.form.shape, y ~. + 0)
if (is.null(marg.cov))
covariables <- data.frame(coord)
else
covariables <- data.frame(coord, marg.cov)
loc.model <- modeldef(covariables, loc.form)
scale.model <- modeldef(covariables, scale.form)
shape.model <- modeldef(covariables, shape.form)
loc.dsgn.mat <- loc.model$dsgn.mat
scale.dsgn.mat <- scale.model$dsgn.mat
shape.dsgn.mat <- shape.model$dsgn.mat
loc.pen.mat <- loc.model$pen.mat
scale.pen.mat <- scale.model$pen.mat
shape.pen.mat <- shape.model$pen.mat
loc.penalty <- loc.model$penalty.tot
scale.penalty <- scale.model$penalty.tot
shape.penalty <- shape.model$penalty.tot
loc.type <- loc.model$type
scale.type <- scale.model$type
shape.type <- shape.model$type
##The total number of parameters to be estimated for each GEV
##parameter
n.loccoeff <- ncol(loc.dsgn.mat)
n.scalecoeff <- ncol(scale.dsgn.mat)
n.shapecoeff <- ncol(shape.dsgn.mat)
##The number of ``purely parametric'' parameters to estimate i.e. we
##do not consider the weigths given to each basis function
n.pparloc <- loc.model$n.ppar
n.pparscale <- scale.model$n.ppar
n.pparshape <- shape.model$n.ppar
loc.names <- paste("locCoeff", 1:n.loccoeff, sep="")
scale.names <- paste("scaleCoeff", 1:n.scalecoeff, sep="")
shape.names <- paste("shapeCoeff", 1:n.shapecoeff, sep="")
param <- c("nugget", "range", "smooth")
if (cov.mod == "caugen")
param <- c(param, "smooth2")
else
smooth2 <- 0
##Do the same for the temporal regression coefficients
if (use.temp.cov[1]){
temp.model.loc <- modeldef(temp.cov, temp.form.loc)
temp.dsgn.mat.loc <- temp.model.loc$dsgn.mat
temp.pen.mat.loc <- temp.model.loc$pen.mat
temp.penalty.loc <- temp.model.loc$penalty.tot
n.tempcoeff.loc <- ncol(temp.dsgn.mat.loc)
n.ppartemp.loc <- temp.model.loc$n.ppar
temp.names.loc <- paste("tempCoeffLoc", 1:n.tempcoeff.loc, sep="")
}
else {
temp.model.loc <- temp.dsgn.mat.loc <- temp.pen.mat.loc <- temp.names.loc <- NULL
n.tempcoeff.loc <- n.ppartemp.loc <- temp.penalty.loc <- 0
}
if (use.temp.cov[2]){
temp.model.scale <- modeldef(temp.cov, temp.form.scale)
temp.dsgn.mat.scale <- temp.model.scale$dsgn.mat
temp.pen.mat.scale <- temp.model.scale$pen.mat
temp.penalty.scale <- temp.model.scale$penalty.tot
n.tempcoeff.scale <- ncol(temp.dsgn.mat.scale)
n.ppartemp.scale <- temp.model.scale$n.ppar
temp.names.scale <- paste("tempCoeffScale", 1:n.tempcoeff.scale, sep="")
}
else {
temp.model.scale <- temp.dsgn.mat.scale <- temp.pen.mat.scale <- temp.names.scale <- NULL
n.tempcoeff.scale <- n.ppartemp.scale <- temp.penalty.scale <- 0
}
if (use.temp.cov[3]){
temp.model.shape <- modeldef(temp.cov, temp.form.shape)
temp.dsgn.mat.shape <- temp.model.shape$dsgn.mat
temp.pen.mat.shape <- temp.model.shape$pen.mat
temp.penalty.shape <- temp.model.shape$penalty.tot
n.tempcoeff.shape <- ncol(temp.dsgn.mat.shape)
n.ppartemp.shape <- temp.model.shape$n.ppar
temp.names.shape <- paste("tempCoeffShape", 1:n.tempcoeff.shape, sep="")
}
else {
temp.model.shape <- temp.dsgn.mat.shape <- temp.pen.mat.shape <- temp.names.shape <- NULL
n.tempcoeff.shape <- n.ppartemp.shape <- temp.penalty.shape <- 0
}
param <- c(param, loc.names, scale.names, shape.names, temp.names.loc, temp.names.scale,
temp.names.shape)
##First create a "void" function
nplk <- function(x) x
##And define the "body" of the function as the number of parameters
##to estimate depends on n.site
body(nplk) <- parse(text = paste("-.C(C_schlatherdsgnmat, as.integer(cov.mod.num),
as.double(data), as.double(dist), as.integer(n.site), as.integer(n.obs), as.integer(dist.dim),
as.integer(weighted), as.double(weights), as.double(loc.dsgn.mat), as.double(loc.pen.mat),
as.integer(n.loccoeff), as.integer(n.pparloc), as.double(loc.penalty), as.double(scale.dsgn.mat),
as.double(scale.pen.mat), as.integer(n.scalecoeff), as.integer(n.pparscale),
as.double(scale.penalty), as.double(shape.dsgn.mat), as.double(shape.pen.mat),
as.integer(n.shapecoeff), as.integer(n.pparshape), as.double(shape.penalty),
as.integer(use.temp.cov), as.double(temp.dsgn.mat.loc), as.double(temp.pen.mat.loc),
as.integer(n.tempcoeff.loc), as.integer(n.ppartemp.loc), as.double(temp.penalty.loc),
as.double(temp.dsgn.mat.scale), as.double(temp.pen.mat.scale), as.integer(n.tempcoeff.scale),
as.integer(n.ppartemp.scale), as.double(temp.penalty.scale), as.double(temp.dsgn.mat.shape),
as.double(temp.pen.mat.shape), as.integer(n.tempcoeff.shape), as.integer(n.ppartemp.shape),
as.double(temp.penalty.shape),",
paste("as.double(c(", paste(loc.names, collapse = ","), ")), "),
paste("as.double(c(", paste(scale.names, collapse = ","), ")), "),
paste("as.double(c(", paste(shape.names, collapse = ","), ")), "),
paste("as.double(c(", paste(temp.names.loc, collapse = ","), ")), "),
paste("as.double(c(", paste(temp.names.scale, collapse = ","), ")), "),
paste("as.double(c(", paste(temp.names.shape, collapse = ","), ")), "),
"as.double(nugget), as.double(range), as.double(smooth), as.double(smooth2),
dns = double(1), NAOK = TRUE)$dns"))
##Define the formal arguments of the function
form.nplk <- NULL
for (i in 1:length(param))
form.nplk <- c(form.nplk, alist(a=))
names(form.nplk) <- param
formals(nplk) <- form.nplk
if (missing(start)) {
start <- .start.schlather(data, coord, covariables, cov.mod, loc.form,
scale.form, shape.form, method = method, ...)
if (use.temp.cov[1]){
tempCoeff.loc <- rep(0, n.tempcoeff.loc)
names(tempCoeff.loc) <- temp.names.loc
}
else
tempCoeff.loc <- NULL
if (use.temp.cov[2]){
tempCoeff.scale <- rep(0, n.tempcoeff.scale)
names(tempCoeff.scale) <- temp.names.scale
}
else
tempCoeff.scale <- NULL
if (use.temp.cov[3]){
tempCoeff.shape <- rep(0, n.tempcoeff.shape)
names(tempCoeff.shape) <- temp.names.shape
}
else
tempCoeff.shape <- NULL
start <- c(start, as.list(c(tempCoeff.loc, tempCoeff.scale, tempCoeff.shape)))
start <- start[!(param %in% names(list(...)))]
}
if (!is.list(start))
stop("'start' must be a named list")
if (!length(start))
stop("there are no parameters left to maximize over")
nm <- names(start)
l <- length(nm)
f <- formals(nplk)
names(f) <- param
m <- match(nm, param)
if(any(is.na(m)))
stop("'start' specifies unknown arguments")
formals(nplk) <- c(f[m], f[-m])
nllh <- function(p, ...) nplk(p, ...)
if(l > 1)
body(nllh) <- parse(text = paste("nplk(", paste("p[",1:l,
"]", collapse = ", "), ", ...)"))
fixed.param <- list(...)[names(list(...)) %in% param]
if(any(!(param %in% c(nm,names(fixed.param)))))
stop("unspecified parameters")
start.arg <- c(list(p = unlist(start)), fixed.param)
init.lik <- do.call("nllh", start.arg)
if (warn && (init.lik >= 1.0e15))
warning("negative log-likelihood is infinite at starting values")
if (method == "nlminb"){
start <- as.numeric(start)
opt <- nlminb(start, nllh, ..., control = control)
opt$counts <- opt$evaluations
opt$value <- opt$objective
names(opt$par) <- nm
if ((opt$convergence != 0) || (opt$value >= 1.0e15)) {
if (warn)
warning("optimization may not have succeeded")
}
if (opt$convergence == 0)
opt$convergence <- "successful"
}
if (method == "nlm"){
start <- as.numeric(start)
opt <- nlm(nllh, start, ...)
opt$counts <- opt$iterations
names(opt$counts) <- "function"
opt$value <- opt$minimum
opt$par <- opt$estimate
names(opt$par) <- nm
if (opt$code <= 2)
opt$convergence <- "sucessful"
if (opt$code == 3)
opt$convergence <- "local minimum or 'steptol' is too small"
if (opt$code == 4)
opt$convergence <- "iteration limit reached"
if (opt$code == 5)
opt$convergence <- "optimization failed"
}
if (!(method %in% c("nlm", "nlminb"))){
opt <- optim(start, nllh, ..., method = method,
control = control)
if ((opt$convergence != 0) || (opt$value >= 1.0e15)){
if (warn)
warning("optimization may not have succeeded")
if (opt$convergence != 0)
opt$convergence <- "iteration limit reached"
}
else opt$convergence <- "successful"
}
if (opt$value == init.lik){
if (warn)
warning("optimization stayed at the starting values.")
opt$convergence <- "Stayed at start. val."
}
param.names <- param
param <- c(opt$par, unlist(fixed.param))
param <- param[param.names]
##Reset the weights to their original values
if ((length(weights) == 1) && (weights == 0))
weights <- NULL
std.err <- .schlatherstderr(param, data, dist, cov.mod.num, loc.dsgn.mat, scale.dsgn.mat,
shape.dsgn.mat, temp.dsgn.mat.loc, temp.dsgn.mat.scale,
temp.dsgn.mat.shape, use.temp.cov, fit.marge = fit.marge,
fixed.param = names(fixed.param),
param.names = param.names, weights = weights)
if (check.grad)
print(round(rbind(numerical = -opt$grad, analytical = std.err$grad), 3))
opt$hessian <- std.err$hessian
var.score <- std.err$var.score
ihessian <- try(solve(opt$hessian), silent = TRUE)
if(!is.matrix(ihessian) || any(is.na(var.score))){
if (warn)
warning("Observed information matrix is singular. No standard error will be computed.")
std.err.type <- "none"
}
else{
std.err.type <- "yes"
var.cov <- ihessian %*% var.score %*% ihessian
std.err <- diag(var.cov)
std.idx <- which(std.err <= 0)
if(length(std.idx) > 0){
if (warn)
warning("Some (observed) standard errors are negative;\n passing them to NA")
std.err[std.idx] <- NA
}
std.err <- sqrt(std.err)
if(corr) {
.mat <- diag(1/std.err, nrow = length(std.err))
corr.mat <- structure(.mat %*% var.cov %*% .mat, dimnames = list(nm,nm))
diag(corr.mat) <- rep(1, length(std.err))
}
else
corr.mat <- NULL
colnames(var.cov) <- rownames(var.cov) <- colnames(ihessian) <-
rownames(ihessian) <- names(std.err) <- nm
}
if (std.err.type == "none"){
std.err <- std.err.type <- corr.mat <- NULL
var.cov <- ihessian <- var.score <- NULL
}
if (cov.mod == "caugen")
cov.fun <- covariance(nugget = param["nugget"], sill = 1 - param["nugget"], range = param["range"],
smooth = param["smooth"], smooth2 = param["smooth2"],
cov.mod = cov.mod, plot = FALSE)
else
cov.fun <- covariance(nugget = param["nugget"], sill = 1- param["nugget"], range = param["range"],
smooth = param["smooth"], cov.mod = cov.mod, plot = FALSE)
ext.coeff <- function(h)
1 + sqrt(0.5 - 0.5 * cov.fun(h))
conc.prob <- function(h){
n.sim <- 20000
n.site <- length(h)
rho <- cov.fun(h)
rho <- matrix(rho, 2 * n.sim, n.site, byrow = TRUE)
Y <- sqrt(2 * pi) * rgp(n.sim, h, cov.mod, nugget = param["nugget"], sill = 1 - param["nugget"],
range = param["range"], smooth = param["smooth"])
Y <- rbind(pmax(Y, 0), pmax(-Y, 0))##antithetic
dummy <- 1 / (0.5 * (1/Y[,1] + 1 / Y) * (1 + sqrt(1 - 2 * (1 + rho) *
Y[,1] * Y / (Y[,1] + Y)^2)))
dummy <- replace(dummy, is.na(dummy), 0)
colMeans(dummy)
}
fitted <- list(fitted.values = opt$par, std.err = std.err,
var.cov = var.cov, fixed = unlist(fixed.param), param = param, iso = TRUE,
deviance = 2*opt$value, corr = corr.mat, convergence = opt$convergence,
counts = opt$counts, message = opt$message, data = data, est = "MPLE",
logLik = -opt$value, opt.value = opt$value, model = "Schlather", coord = coord,
fit.marge = fit.marge, ext.coeff = ext.coeff, cov.mod = cov.mod, cov.fun = cov.fun,
loc.form = loc.form, scale.form = scale.form, shape.form = shape.form,
lik.fun = nllh, loc.type = loc.type, scale.type = scale.type,
shape.type = shape.type, ihessian = ihessian, var.score = var.score,
marg.cov = marg.cov, nllh = nllh, weighted = weighted, conc.prob = conc.prob)
class(fitted) <- c(fitted$model, "maxstab")
return(fitted)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.