Nothing
fitspatgev <- function(data, covariables, loc.form, scale.form, shape.form,
temp.cov = NULL, temp.form.loc = NULL, temp.form.scale = NULL,
temp.form.shape = NULL, ..., start, control = list(maxit = 10000),
method = "Nelder", warn = TRUE, corr = FALSE){
n.site <- ncol(data)
n.obs <- nrow(data)
if (n.site != nrow(covariables))
stop("'data' and 'covariates' doesn't match")
use.temp.cov <- c(!is.null(temp.form.loc), !is.null(temp.form.scale), !is.null(temp.form.shape))
if (any(use.temp.cov) && (n.obs != nrow(temp.cov)))
stop("'data' and 'temp.cov' doesn't match")
if (any(use.temp.cov) && is.null(temp.cov))
stop("'temp.cov' must be supplied if at least one temporal formula is given")
##With our notation, formula must be of the form y ~ xxxx
loc.form <- update(loc.form, y ~ .)
scale.form <- update(scale.form, y ~ .)
shape.form <- update(shape.form, y ~ .)
if (use.temp.cov[1])
temp.form.loc <- update(temp.form.loc, y ~. + 0)
if (use.temp.cov[2])
temp.form.scale <- update(temp.form.scale, y ~. + 0)
if (use.temp.cov[3])
temp.form.shape <- update(temp.form.shape, y ~. + 0)
loc.model <- modeldef(covariables, loc.form)
scale.model <- modeldef(covariables, scale.form)
shape.model <- modeldef(covariables, shape.form)
loc.dsgn.mat <- loc.model$dsgn.mat
scale.dsgn.mat <- scale.model$dsgn.mat
shape.dsgn.mat <- shape.model$dsgn.mat
loc.pen.mat <- loc.model$pen.mat
scale.pen.mat <- scale.model$pen.mat
shape.pen.mat <- shape.model$pen.mat
loc.penalty <- loc.model$penalty.tot
scale.penalty <- scale.model$penalty.tot
shape.penalty <- shape.model$penalty.tot
##The total number of parameters to be estimated for each GEV
##parameter
n.loccoeff <- ncol(loc.dsgn.mat)
n.scalecoeff <- ncol(scale.dsgn.mat)
n.shapecoeff <- ncol(shape.dsgn.mat)
##The number of ``purely parametric'' parameters to estimate i.e. we
##do not consider the weigths given to each basis function
n.pparloc <- loc.model$n.ppar
n.pparscale <- scale.model$n.ppar
n.pparshape <- shape.model$n.ppar
loc.names <- paste("locCoeff", 1:n.loccoeff, sep="")
scale.names <- paste("scaleCoeff", 1:n.scalecoeff, sep="")
shape.names <- paste("shapeCoeff", 1:n.shapecoeff, sep="")
##Do the same for the temporal regression coefficients
if (use.temp.cov[1]){
temp.model.loc <- modeldef(temp.cov, temp.form.loc)
temp.dsgn.mat.loc <- temp.model.loc$dsgn.mat
temp.pen.mat.loc <- temp.model.loc$pen.mat
temp.penalty.loc <- temp.model.loc$penalty.tot
n.tempcoeff.loc <- ncol(temp.dsgn.mat.loc)
n.ppartemp.loc <- temp.model.loc$n.ppar
temp.names.loc <- paste("tempCoeffLoc", 1:n.tempcoeff.loc, sep="")
}
else {
temp.model.loc <- temp.dsgn.mat.loc <- temp.pen.mat.loc <- temp.names.loc <- NULL
n.tempcoeff.loc <- n.ppartemp.loc <- temp.penalty.loc <- 0
}
if (use.temp.cov[2]){
temp.model.scale <- modeldef(temp.cov, temp.form.scale)
temp.dsgn.mat.scale <- temp.model.scale$dsgn.mat
temp.pen.mat.scale <- temp.model.scale$pen.mat
temp.penalty.scale <- temp.model.scale$penalty.tot
n.tempcoeff.scale <- ncol(temp.dsgn.mat.scale)
n.ppartemp.scale <- temp.model.scale$n.ppar
temp.names.scale <- paste("tempCoeffScale", 1:n.tempcoeff.scale, sep="")
}
else {
temp.model.scale <- temp.dsgn.mat.scale <- temp.pen.mat.scale <- temp.names.scale <- NULL
n.tempcoeff.scale <- n.ppartemp.scale <- temp.penalty.scale <- 0
}
if (use.temp.cov[3]){
temp.model.shape <- modeldef(temp.cov, temp.form.shape)
temp.dsgn.mat.shape <- temp.model.shape$dsgn.mat
temp.pen.mat.shape <- temp.model.shape$pen.mat
temp.penalty.shape <- temp.model.shape$penalty.tot
n.tempcoeff.shape <- ncol(temp.dsgn.mat.shape)
n.ppartemp.shape <- temp.model.shape$n.ppar
temp.names.shape <- paste("tempCoeffShape", 1:n.tempcoeff.shape, sep="")
}
else {
temp.model.shape <- temp.dsgn.mat.shape <- temp.pen.mat.shape <- temp.names.shape <- NULL
n.tempcoeff.shape <- n.ppartemp.shape <- temp.penalty.shape <- 0
}
param <- c(loc.names, scale.names, shape.names, temp.names.loc, temp.names.scale,
temp.names.shape)
nllik <- function(x) x
body(nllik) <- parse(text = paste("-.C(C_spatgevlik, as.double(data), as.double(covariables),
as.integer(n.site), as.integer(n.obs), as.double(loc.dsgn.mat), as.double(loc.pen.mat),
as.integer(n.loccoeff), as.integer(n.pparloc), as.double(loc.penalty),
as.double(scale.dsgn.mat), as.double(scale.pen.mat), as.integer(n.scalecoeff),
as.integer(n.pparscale), as.double(scale.penalty), as.double(shape.dsgn.mat),
as.double(shape.pen.mat), as.integer(n.shapecoeff), as.integer(n.pparshape),
as.double(shape.penalty), as.integer(use.temp.cov), as.double(temp.dsgn.mat.loc),
as.double(temp.pen.mat.loc), as.integer(n.tempcoeff.loc), as.integer(n.ppartemp.loc),
as.double(temp.penalty.loc), as.double(temp.dsgn.mat.scale), as.double(temp.pen.mat.scale),
as.integer(n.tempcoeff.scale), as.integer(n.ppartemp.scale), as.double(temp.penalty.scale),
as.double(temp.dsgn.mat.shape), as.double(temp.pen.mat.shape), as.integer(n.tempcoeff.shape),
as.integer(n.ppartemp.shape), as.double(temp.penalty.shape),",
paste("as.double(c(", paste(loc.names, collapse = ","), ")), "),
paste("as.double(c(", paste(scale.names, collapse = ","), ")), "),
paste("as.double(c(", paste(shape.names, collapse = ","), ")), "),
paste("as.double(c(", paste(temp.names.loc, collapse = ","), ")), "),
paste("as.double(c(", paste(temp.names.scale, collapse = ","), ")), "),
paste("as.double(c(", paste(temp.names.shape, collapse = ","), ")), "),
"dns = double(1), NAOK = TRUE)$dns"))
##Define the formal arguments of the function
form.nllik <- NULL
for (i in 1:length(param))
form.nllik <- c(form.nllik, alist(a=))
names(form.nllik) <- param
formals(nllik) <- form.nllik
if (missing(start)){
loc <- scale <- shape <- rep(0, n.site)
for (i in 1:n.site){
gev.param <- gevmle(data[,i])
loc[i] <- gev.param["loc"]
scale[i] <- gev.param["scale"]
shape[i] <- gev.param["shape"]
}
locCoeff <- loc.model$init.fun(loc)
scaleCoeff <- scale.model$init.fun(scale)
shapeCoeff <- shape.model$init.fun(shape)
locCoeff[is.na(locCoeff)] <- 0
scaleCoeff[is.na(scaleCoeff)] <- 0
shapeCoeff[is.na(shapeCoeff)] <- 0
##To be sure that the scale parameter is always positive at starting
##values
scales.hat <- scale.model$dsgn.mat %*% scaleCoeff
if (any(scales.hat <= 0))
scaleCoeff[1] <- scaleCoeff[1] - 1.001 * min(scales.hat)
names(locCoeff) <- loc.names
names(scaleCoeff) <- scale.names
names(shapeCoeff) <- shape.names
if (use.temp.cov[1]){
tempCoeff.loc <- rep(0, n.tempcoeff.loc)
names(tempCoeff.loc) <- temp.names.loc
}
else
tempCoeff.loc <- NULL
if (use.temp.cov[2]){
tempCoeff.scale <- rep(0, n.tempcoeff.scale)
names(tempCoeff.scale) <- temp.names.scale
}
else
tempCoeff.scale <- NULL
if (use.temp.cov[3]){
tempCoeff.shape <- rep(0, n.tempcoeff.shape)
names(tempCoeff.shape) <- temp.names.shape
}
else
tempCoeff.shape <- NULL
start <- as.list(c(locCoeff, scaleCoeff, shapeCoeff, tempCoeff.loc,
tempCoeff.scale, tempCoeff.shape))
start <- start[!(param %in% names(list(...)))]
}
if (!length(start))
stop("there are no parameters left to maximize over")
nm <- names(start)
l <- length(nm)
f <- formals(nllik)
names(f) <- param
m <- match(nm, param)
if(any(is.na(m)))
stop("'start' specifies unknown arguments")
formals(nllik) <- c(f[m], f[-m])
nllh <- function(p, ...) nllik(p, ...)
if(l > 1)
body(nllh) <- parse(text = paste("nllik(", paste("p[",1:l,
"]", collapse = ", "), ", ...)"))
fixed.param <- list(...)[names(list(...)) %in% param]
if(any(!(param %in% c(nm,names(fixed.param)))))
stop("unspecified parameters")
start.arg <- c(list(p = unlist(start)), fixed.param)
init.lik <- do.call("nllh", start.arg)
if (warn && (init.lik >= 1.0e6))
warning("negative log-likelihood is infinite at starting values")
if (method == "nlminb"){
start <- as.numeric(start)
opt <- nlminb(start, nllh, ..., control = control)
opt$counts <- opt$evaluations
opt$value <- opt$objective
names(opt$par) <- nm
}
else if (method == "nlm"){
start <- as.numeric(start)
opt <- nlm(nllh, start, ...)
opt$counts <- opt$iterations
names(opt$counts) <- "function"
opt$value <- opt$minimum
opt$par <- opt$estimate
names(opt$par) <- nm
if (opt$code <= 2){
opt$convergence <- 0
opt$message <- NULL
}
if (opt$code > 2){
opt$convergence <- 1
opt$message <- paste("nlm error code", opt$code)
}
}
else
opt <- optim(start, nllh, ..., method = method, control = control)
if ((opt$convergence != 0) || (opt$value >= 1.0e6)){
if (warn)
warning("optimization may not have succeeded")
}
else
opt$convergence <- "successful"
param.names <- param
param <- c(opt$par, unlist(fixed.param))
param <- param[param.names]
std.err <- .spatgevstderr(param, data, loc.dsgn.mat,scale.dsgn.mat, shape.dsgn.mat,
temp.dsgn.mat.loc, temp.dsgn.mat.scale, temp.dsgn.mat.shape,
use.temp.cov, fixed.param = names(fixed.param),
param.names = param.names)
opt$hessian <- std.err$hessian
var.score <- std.err$var.score
ihessian <- try(solve(opt$hessian), silent = TRUE)
if(!is.matrix(ihessian) || any(is.na(var.score))){
if (warn)
warning("Observed information matrix is singular. No standard error will be computed.")
std.err.type <- "none"
}
else{
std.err.type <- "yes"
var.cov <- ihessian %*% var.score %*% ihessian
std.err <- diag(var.cov)
std.idx <- which(std.err <= 0)
if(length(std.idx) > 0){
if (warn)
warning("Some (observed) standard errors are negative;\n passing them to NA")
std.err[std.idx] <- NA
}
std.err <- sqrt(std.err)
if(corr) {
.mat <- diag(1/std.err, nrow = length(std.err))
corr.mat <- structure(.mat %*% var.cov %*% .mat, dimnames = list(nm,nm))
diag(corr.mat) <- rep(1, length(std.err))
}
else
corr.mat <- NULL
colnames(var.cov) <- colnames(ihessian) <- rownames(var.cov) <-
rownames(ihessian) <- names(std.err) <- nm
}
if (std.err.type == "none")
std.err <- std.err.type <- corr.mat <- var.cov <- ihessian <-
var.score <- NULL
ans <- list(fitted.values = opt$par, param = param, std.err = std.err, var.cov = var.cov,
counts = opt$counts, message = opt$message, covariables = covariables,
logLik = -opt$value, loc.form = loc.form, scale.form = scale.form,
shape.form = shape.form, convergence = opt$convergence, nllh = nllh,
deviance = 2 * opt$value, ihessian = ihessian, var.score = var.score,
data = data, fixed = unlist(fixed.param), hessian = opt$hessian,
use.temp.cov = use.temp.cov)
class(ans) <- "spatgev"
return(ans)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.