R/summary.CV.SuperLearner.R

Defines functions print.summary.CV.SuperLearner summary.CV.SuperLearner

Documented in print.summary.CV.SuperLearner summary.CV.SuperLearner

summary.CV.SuperLearner <- function(object, obsWeights = NULL, ...) {

  if ("env" %in% names(object)) {
    env = object$env
  } else {
    env = parent.frame()
  }
  # Default is "method.NNLS".
  method <- if (is.null(as.list(object$call)[["method"]])) {
    method <- "method.NNLS"
  } else if (is.symbol(as.list(object$call)[["method"]])) {
    method <- get(paste(as.list(object$call)[["method"]]), envir = env)
  } else {
    method <- as.list(object$call)[["method"]]
  }

	library.names <- colnames(coef(object))
	V <- object$V
	n <- length(object$SL.predict)
	if(is.null(obsWeights)) {
		obsWeights <- rep(1, length(object$Y))
	}
	# copy objects locally
	folds <- object$folds
	SL.predict <- object$SL.predict
	discreteSL.predict <- object$discreteSL.predict
	library.predict <- object$library.predict
	Y <- object$Y

	# create placeholders
	Risk.SL <- rep(NA, length = V)
	Risk.dSL <- rep(NA, length = V)
	Risk.library <- matrix(NA, nrow = length(library.names), ncol = V)
	rownames(Risk.library) <- library.names

	# Risk estimate depends on the loss function used
	if (method %in% c("method.NNLS", "method.NNLS2", "method.CC_LS")) {
		for (ii in seq_len(V)) {
			Risk.SL[ii] <- mean(obsWeights[folds[[ii]]] * (Y[folds[[ii]]] - SL.predict[folds[[ii]]])^2)
			Risk.dSL[ii] <- mean(obsWeights[folds[[ii]]] * (Y[folds[[ii]]] - discreteSL.predict[folds[[ii]]])^2)
			Risk.library[, ii] <- apply(library.predict[folds[[ii]], , drop = FALSE], 2, function(x) mean(obsWeights[folds[[ii]]] * (Y[folds[[ii]]] - x)^2))
		}
		se <- (1 / sqrt(n)) * c(sd(obsWeights * (Y - SL.predict)^2), sd(obsWeights * (Y - discreteSL.predict)^2), apply(library.predict, 2, function(x) sd(obsWeights * (Y - x)^2)))
	} else if (method %in% c("method.NNloglik", "method.CC_nloglik")) {
		for (ii in seq_len(V)) {
			Risk.SL[ii] <- -mean(obsWeights[folds[[ii]]] * ifelse(Y[folds[[ii]]], log(SL.predict[folds[[ii]]]), log(1 - SL.predict[folds[[ii]]])))
			Risk.dSL[ii] <- -mean(obsWeights[folds[[ii]]] * ifelse(Y[folds[[ii]]], log(discreteSL.predict[folds[[ii]]]), log(1 - discreteSL.predict[folds[[ii]]])))
			Risk.library[, ii] <- apply(library.predict[folds[[ii]], , drop = FALSE], 2, function(x) {
				-mean(obsWeights[folds[[ii]]] * ifelse(Y[folds[[ii]]], log(x), log(1 - x)))
			})
		}
		se <- rep.int(NA, (length(library.names) + 2))
	} else if (method %in% c("method.AUC")) {
		requireNamespace("cvAUC") # make sure cvAUC loaded
		# require("ROCR") # cvAUC will load ROCR
		for (ii in seq_len(V)) {
			Risk.SL[ii] <- cvAUC::cvAUC(predictions = SL.predict[folds[[ii]]], labels = Y[folds[[ii]]], folds = NULL)$cvAUC
			Risk.dSL[ii] <- cvAUC::cvAUC(predictions = discreteSL.predict[folds[[ii]]], labels = Y[folds[[ii]]], folds = NULL)$cvAUC
			Risk.library[, ii] <- apply(library.predict[folds[[ii]], , drop = FALSE], 2, function(x) cvAUC::cvAUC(predictions = x, labels = Y[folds[[ii]]], folds = NULL)$cvAUC)
		}
		se <- rep.int(NA, (length(library.names) + 2)) # no se right now?
		} else {
		stop("summary function not available for SuperLearner with loss function/method used")
	}

	Table <- data.frame(Algorithm = c("Super Learner", "Discrete SL", library.names), Ave = c(mean(Risk.SL), mean(Risk.dSL), apply(Risk.library, 1, mean)), se = se, Min = c(min(Risk.SL), min(Risk.dSL), apply(Risk.library, 1, min)), Max = c(max(Risk.SL), max(Risk.dSL), apply(Risk.library, 1, max)))
	out <- list(call = object$call, method = method, V = V, Risk.SL = Risk.SL, Risk.dSL = Risk.dSL, Risk.library = Risk.library, Table = Table)
	class(out) <- "summary.CV.SuperLearner"
	return(out)
}

print.summary.CV.SuperLearner <- function(x, digits = max(2, getOption("digits") - 2), ...) {
	cat("\nCall: ", deparse(x$call, width.cutoff = .9*getOption("width")), "\n", fill = getOption("width"))
	cat("Risk is based on: ")
	if(x$method %in% c("method.NNLS", "method.NNLS2", "method.CC_LS")) {
		cat("Mean Squared Error")
	} else if (x$method %in% c("method.NNloglik", "method.CC_nloglik")) {
		cat("Negative Log Likelihood (-2*log(L))")
	} else if (x$method %in% c("method.AUC")) {
		cat("Area under ROC curve (AUC)")
	} else {
		stop("summary method not available")
	}
	cat("\n\nAll risk estimates are based on V = ", x$V, "\n\n")
	print(x$Table, digits = digits, row.names = FALSE)
}

Try the SuperLearner package in your browser

Any scripts or data that you put into this service are public.

SuperLearner documentation built on May 29, 2024, 5:25 a.m.