inst/doc/TTR_space_tutorial.R

## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)

## ----eval=FALSE---------------------------------------------------------------
#   install.packages("TTR.PGM_1.0.0.tar.gz",repos=NULL, type="source")

## -----------------------------------------------------------------------------
 setwd(tempdir())

## ----results='hide', message=FALSE--------------------------------------------
library(TTR.PGM)
library(LaplacesDemon)
library(DEoptim)

## -----------------------------------------------------------------------------
model_sdm <- function(parm, Data)
{
  ### Parameters
  ttr_params <- TTR.PGM::get_parms(parm, Data)
  parm <- TTR.PGM::interval_parms(parm,Data)
  names(parm)<-Data$parm.names

  ### Process model
  x <- TTR.PGM::run_ttr(ttr_params,Data)
  # explicitly name the indices of the components of x we want to use:
  i_step <- Data$out.dim["steps"] # the steps dimension is the last time step in x
  i_species <- Data$out.dim["species"] # placebo just to clarify that this dimension exists
  i_sites <- 1:Data$out.dim["sites"] # placebo just to clarify that this dimension exists

  ### Log-likelihood
  MsMr <- (x["Ms",i_species,i_step,i_sites,drop=F] + x["Mr",i_species,i_step,i_sites,drop=F])
  mu <- as.vector( MsMr*parm["scale"] + 1e-22) 
  p01 <- invcloglog(log(mu)) 
  yhat <- rbern(Data$n.sites,p01)
  obs <- Data$y
  LL <-  sum(dbern(obs,p01,log=TRUE))

  ### Log-Prior
  # undefined in this example: equivalent to having completely non-informative priors
  Prior <- 0
  
  ### Log-Posterior
  LP <- LL + Prior

  ### Return
  if (Data$options$optim == "DEoptim")
    return(-1 * LP)
  if (Data$options$optim == "LaplacesDemon")
    return(list(LP = LP, Dev = -2 * LL, Monitor = LP, yhat = yhat, parm = parm))
  if (Data$options$optim == "no")
    return(list(yhat=yhat, p01 = p01, mu = mu))
}


## -----------------------------------------------------------------------------
  spname="Terminalia_sericea"
  data(data_input_space_Terminalia_sericea)
  in.df <- data_input_space_Terminalia_sericea

## -----------------------------------------------------------------------------
  seconds.month = 60*60*24*30.44 
  seconds.day = 60*60*24

  input_species <-  TTR.PGM::get_input(observations=matrix(in.df$obs,nrow=length(in.df$obs),ncol=1),
                        lon=in.df$pts.lon,
                        lat=in.df$pts.lat,
                        tcur=t(in.df[,grep("tmax",colnames(in.df))]), 
                        tnur=t(in.df[,grep("tmin",colnames(in.df))]), 
                        tgrowth=t(in.df[,grep("tavg",colnames(in.df))]), 
                        tloss =t(in.df[,grep("tavg",colnames(in.df))]), 
                        seconds = seconds.month, 
                        p3=p3, p4=p4,
                        catm=array(data=33.8, dim=c(12,length(in.df$obs))),
                        pet=t(in.df[,grep("pet",colnames(in.df))]) / seconds.month,
                        rain=t(in.df[,grep("rain",colnames(in.df))]) / seconds.month,
                        rsds=t(in.df[,grep("rsds",colnames(in.df))]) / seconds.day*1e06, #1e06 from MJ to J 
                        wp=in.df$wp,
                        fc=in.df$fc) 


## ----eval=FALSE---------------------------------------------------------------
#    saveRDS(input_species,file=paste0("input_",spname,".rds"))
#    input_species  <- readRDS(paste0("input_",spname,".rds"))

## -----------------------------------------------------------------------------
  options <- TTR.PGM::standard_options
  options$species <- spname
  options$photo <- "c3"
  options$steps <- 300
  options$initial_mass <- 0.1
  options$ve <- "oak" 

## -----------------------------------------------------------------------------
  MyData <- TTR.PGM::make_data(input_species, options=options)
  #See which default bounds are associated with this model.
  MyData$bounds

## -----------------------------------------------------------------------------
  oak_beta_bounds = list(
      CU_Ns_1 = c(NA,NA),
      CU_Ns_2 = c(NA,NA),
      CU_swc_1 = c(0,100),
      CU_swc_2 = c(0,100),
      g_swc_1 = c(0,100),
      g_swc_2 = c(0,100),
      g_tgrowth_1 = c(0,50),
      g_tgrowth_2 = c(0,50),
      g_tgrowth_3 = c(0,50),
      g_tgrowth_4 = c(0,50),
      L_mix_1 = c(100,100),
      L_mix_2 = c(0,0),
      L_mix_3 = c(0,0),
      L_swc_1 = c(NA,NA),
      L_swc_2 = c(NA,NA),
      L_tloss_1 = c(NA,NA),
      L_tloss_2 = c(NA,NA),
      NU_Nsoil_1 = c(NA,NA),
      NU_Nsoil_2 = c(NA,NA),
      NU_swc_1 = c(0,100),
      NU_swc_2 = c(0,100),
      NU_swc_3 = c(0,100),
      NU_swc_4 = c(0,100),
      NU_tnur_1 = c(0,50),
      NU_tnur_2 = c(0,50)
    )    

## -----------------------------------------------------------------------------
  globals = TTR.PGM::standard_globals  
  globals["gmax"] = 40    
  globals["KM"] = 2.5
  globals["mmax"] = 0.1 

## -----------------------------------------------------------------------------
  MyData <- TTR.PGM::make_data(input_species,
                    options=options,
                    bounds=list(alpha=list(scale=c(0.1,10)), beta=oak_beta_bounds),
                    globals=globals)
  MyData$bounds

## -----------------------------------------------------------------------------
  parm <- MyData$PGF(MyData)  
  TTR.PGM::get_parms(parm, MyData) 

## ----results='hide', message=FALSE--------------------------------------------
  set.seed(2024)
  MyData$options$optim <- "DEoptim" 
  deoptim_pop = 50 
  deoptim_iter = 200 
  deoptim_trace = 5 
  ft.DE <-DEoptim(model_sdm, 
                      upper=MyData$bounds[,"upper"], 
                      lower=MyData$bounds[,"lower"],
                      control=DEoptim.control(
                      NP = deoptim_pop,
                      itermax = deoptim_iter,
                      trace = deoptim_trace,
                      CR=0.9, F=0.8, c= 0.75,
                      initialpop = NULL, 
                      strategy = 2,
                      parallelType=0,
                      packages = list("LaplacesDemon","TTR.PGM")),
                      Data=MyData) 

## -----------------------------------------------------------------------------
 parm.DE <- ft.DE$optim$bestmem                        

## ----results='hide', message=FALSE--------------------------------------------
  MyData$options$optim <- "LaplacesDemon"
  iter<-2e4 
  status<-1e3 
  thin<-10
  Initial.Values <- as.numeric(parm.DE) 
  ft.LD.DRAM <- LaplacesDemon(model_sdm, Data=MyData, Initial.Values,
      Covar=NULL, Iterations=iter, Status=status, Thinning=thin,
      Algorithm="DRAM", Specs=list(Adaptive=iter/10, Periodicity=10))

  Initial.Values <- as.initial.values(ft.LD.DRAM)
  ft.LD.DRAM <- LaplacesDemon(model_sdm, Data=MyData, Initial.Values,
      Covar=ft.LD.DRAM$covar, Iterations=iter, Status=status, Thinning=thin,
      Algorithm="DRAM", Specs=list(Adaptive=iter/10, Periodicity=10))    


## -----------------------------------------------------------------------------
library(ROCR)
fit_eval <- function(parm,Data,Model, PLOT=TRUE) {
  
# opt.cut from 
# https://www.r-bloggers.com/2014/12/a-small-introduction-to-the-rocr-package/
# see https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3755824/
# To determine the optimal cut off values the square of distance between the point (0, 1) 
# on the upper left hand corner of the ROC space and any point on the ROC curve is minimized

  opt.cut = function(perf, pred){
        cut.ind = mapply(FUN=function(x, y, p){
            d = (x - 0)^2 + (y-1)^2
            ind = which(d == min(d))
            c(sensitivity = y[[ind]], specificity = 1-x[[ind]], 
                cutoff = p[[ind]], ind=ind)
        }, perf@x.values, perf@y.values, pred@cutoffs)
    }

  # generate the TTR.PGM model predictions
  p01 <- TTR.PGM::predict_ttr(parm,Model,Data)$p01

  pred <- ROCR::prediction(as.numeric(p01),as.numeric(unlist(Data$y)))
  roc.perf <- ROCR::performance(pred, measure = "tpr", x.measure = "fpr")
  stats <- opt.cut(roc.perf, pred)
  auc.perf <- ROCR::performance(pred, measure = "auc")

  if(PLOT==TRUE) {
        plot(roc.perf, main = paste0("AUC=",round(unlist(auc.perf@y.values),3) ) )
        abline(a=0, b= 1,lty=2)
    }

  ret <- c ( auc = unlist(auc.perf@y.values),
                cutoff = as.numeric(unlist(stats["cutoff",1])),
                sensitivity = as.numeric(unlist(stats["sensitivity",1])),
                specificity = as.numeric(unlist(stats["specificity",1])),
                tp = unlist(pred@tp)[stats["ind",1]],
                tn = unlist(pred@tn)[stats["ind",1]],
                fp = unlist(pred@fp)[stats["ind",1]],
                fn = unlist(pred@fn)[stats["ind",1]],
                tss = NULL)

  ret["tss"] <- ret["sensitivity"] - (1-ret["specificity"])

 return( ret )
}   

## -----------------------------------------------------------------------------
myMAPmean <- function(ft,MyData,q=0.75) {  
     LP<-ft$Monitor[,"LP"]
     n <- length(LP)
     LP <- LP[(n/2):n] # discard first half of chain
     wLP <- which(LP > quantile(LP,q) )
     MAPmeans <- apply(ft$Posterior1[wLP,MyData$parm.names],2,mean)
     return(MAPmeans)
     }

## -----------------------------------------------------------------------------
  data(data_map) 
  ft.DE.eval <- fit_eval(parm.DE ,MyData,model_sdm,PLOT=FALSE)
  ft.DE.proj <- TTR.PGM::predict_ttr(parm.DE,model_sdm,MyData, data_map)

## -----------------------------------------------------------------------------
  ft.DE <-list(proj = ft.DE.proj,    
              parm = parm.DE,
              eval = ft.DE.eval,
              spname = MyData$options$species,
              MyData = MyData)
  saveRDS(ft.DE ,file = paste0("ft_DE_",MyData$options$species,".rds"))

## -----------------------------------------------------------------------------
 plot(ft.LD.DRAM, BurnIn=1000, MyData, PDF=TRUE, Parms=NULL,
      FileName=paste0("MCMC_",MyData$options$species,".pdf"))   

## -----------------------------------------------------------------------------
  parm.LD <- myMAPmean(ft.LD.DRAM,MyData)         
  ft.LD.eval <- fit_eval(parm.LD ,MyData,model_sdm,PLOT=TRUE)        
  ft.LD.proj <- TTR.PGM::predict_ttr(parm.LD,model_sdm,MyData, data_map)

## -----------------------------------------------------------------------------
  ft.LD.oak <-list(proj = ft.LD.proj,
              parm = parm.LD,
              eval = ft.LD.eval,
              spname = MyData$options$species,
              MyData = MyData)
  saveRDS(ft.LD.oak ,file = paste0("ft_LD_",MyData$options$species,".rds"))

## -----------------------------------------------------------------------------
 library(terra)
 library(rnaturalearth)
 library(pals)
 library(plotrix)

## -----------------------------------------------------------------------------
  land <- rnaturalearth::ne_countries(scale = 110, returnclass = "sv")
  landc <- land[land$continent != "Antarctica"]

## -----------------------------------------------------------------------------
 rWRLD <- terra::rast( terra::ext(c(-180, 180, -90, 90)),
                       nrows=90, ncols=180) 

## -----------------------------------------------------------------------------
plot_map <- function(ft,input,rWRLD,land,TEXT) {
    crs.latlon   <- "+proj=longlat +datum=WGS84"
    crs.robinson <- "+proj=robin +datum=WGS84"
    d <- terra::vect(ft$MyData$lonlat,crs=crs.latlon)
    d <- terra::project(d,crs.robinson)
    land  <- terra::project(land,crs.robinson)
    p01.raster <- terra::rasterize(input$lonlat, rWRLD,ft$proj$p01)
    p01.raster <- terra::project(p01.raster,crs.robinson)
    p01.raster <- terra::crop(p01.raster,land)
    m = c(0,0,0,0)
    plot(land,main=paste(TEXT,ft$spname,"AUC=",round(ft$eval["auc"],3)),axes=F,mar=m)
    plot(p01.raster,range=c(0,1),add=T,legend=F,col=pals::ocean.speed(10)[1:8])
    plot(land,add=T)
    plot(d[MyData$y==1],col="white",cex=0.5,add=T)
  }

## -----------------------------------------------------------------------------
  pdf(file=paste0("map_all_",MyData$options$species,".pdf"),width=8,height=4)
    oldpar <- par(mfrow=c(1,1),mar=c(0,0,2,0))
    plot_map(ft.LD.oak,data_map,rWRLD,landc,"")
    col.labels<-c("Suitable","Unsuitable")        
    plotrix::color.legend(-15503940,0,-15003940,-2898757,col.labels,
              rev(pals::ocean.speed(10)[1:8]),
            align="rb",gradient="y")        
  dev.off()
  par(oldpar)


## -----------------------------------------------------------------------------
    oldpar <- par(mfrow=c(1,1),mar=c(0,0,2,0))
    plot_map(ft.LD.oak,data_map,rWRLD,landc,"")
    col.labels<-c("Suitable","Unsuitable")        
    plotrix::color.legend(-15503940,0,-15003940,-2898757,
                          col.labels,
                          rev(pals::ocean.speed(10)[1:8]),
                          align="rb",
                          gradient="y")  
    par(oldpar)                          

Try the TTR.PGM package in your browser

Any scripts or data that you put into this service are public.

TTR.PGM documentation built on June 8, 2025, 9:32 p.m.