Nothing
test_that('trial milestone timing and endpoint event count work as expected', {
pfs <- endpoint(name = 'pfs', type = 'tte', generator = rexp, rate = log(2)/10)
os <- endpoint(name = 'os', type = 'tte', generator = rexp, rate = log(2)/17)
or <- endpoint(name = 'or', type = 'non-tte', readout = c(or = 1), generator = rnorm)
pbo <- arm(name = 'pbo')
pbo$add_endpoints(pfs, os, or)
pfs <- endpoint(name = 'pfs', type = 'tte', generator = rexp, rate = log(2)/12)
os <- endpoint(name = 'os', type = 'tte', generator = rexp, rate = log(2)/18)
or <- endpoint(name = 'or', type = 'non-tte', readout = c(or = 1), generator = rnorm)
trt <- arm(name = 'trt')
trt$add_endpoints(pfs, os, or)
accrual_rate <- data.frame(end_time = c(1, 2, 6, 12, Inf),
piecewise_rate = c(2, 8, 20, 25, 50))
trial <- trial(
name = 'test', n_patients = 1000, duration = 40,
enroller = StaggeredRecruiter, accrual_rate = accrual_rate,
dropout = rweibull, shape = 1.32, scale = 114.4,
silent = TRUE
)
trial$add_arms(sample_ratio = c(1, 2), pbo, trt)
interim1 <- milestone(name = 'interim1',
when = eventNumber(endpoint = 'or', n = 200))
interim2 <- milestone(name = 'interim2',
when = eventNumber(endpoint = 'pfs', n = 240) &
eventNumber(endpoint = 'os', n = 170))
final <- milestone(name = 'final',
when = calendarTime(time = 40))
listener <- listener(silent = TRUE)
listener$add_milestones(interim1, interim2, final)
controller <- controller(trial, listener)
controller$run(n = 1, plot_event = FALSE, silent = TRUE)
## check data
dat1 <- trial$get_locked_data('interim1')
dat2 <- trial$get_locked_data('interim2')
dat3 <- trial$get_locked_data('final')
time1 <- trial$get_milestone_time('interim1')
time2 <- trial$get_milestone_time('interim2')
expect_equal(sum(!is.na(dat1$or)), 200)
expect_equal(
dat2 %>%
filter(enroll_time + or_readout <= time1 &
or_readout < dropout_time &
!is.na(or)) %>%
nrow(),
200)
expect_equal(
dat3 %>%
filter(enroll_time + or_readout <= time1 &
or_readout < dropout_time &
!is.na(or)) %>%
nrow(),
200)
expect_true(sum(dat2$pfs_event %in% 1) == 240 || sum(dat2$os_event %in% 1) == 170)
expect_true(sum(dat2$pfs_event %in% 1) >= 240 && sum(dat2$os_event %in% 1) >= 170)
n_pfs_events <- dat3 %>%
filter(enroll_time + pfs <= time2 &
pfs < dropout_time &
pfs_event %in% 1) %>% nrow()
n_os_events <- dat3 %>%
filter(enroll_time + os <= time2 &
os < dropout_time &
os_event %in% 1) %>% nrow()
expect_true(n_pfs_events == 240 || n_os_events == 170)
expect_true(n_pfs_events >= 240 && n_os_events >= 170)
})
test_that('filters are supported when defining milestones', {
#' random number generator (RNG) for OS, PFS, and PRO
rng <- function(n, medians, prop_high){
## os
median_os_low <- TrialSimulator::solveMixtureExponentialDistribution(
weight1 = prop_high,
median1 = medians['os_high'],
overall_median = medians['os_all']
)
median_pfs_low <- TrialSimulator::solveMixtureExponentialDistribution(
weight1 = prop_high,
median1 = medians['pfs_high'],
overall_median = medians['pfs_all']
)
median_pro_low <- TrialSimulator::solveMixtureExponentialDistribution(
weight1 = prop_high,
median1 = medians['pro_high'],
overall_median = medians['pro_all']
)
dll3 <- sample(c('high', 'low'), size = n, replace = TRUE, prob = c(prop_high, 1 - prop_high))
os_high <- rexp(n, rate = log(2) / medians['os_high'])
os_low <- rexp(n, rate = log(2) / median_os_low)
pfs_high <- rexp(n, rate = log(2) / medians['pfs_high'])
pfs_low <- rexp(n, rate = log(2) / median_pfs_low)
pro_high <- rexp(n, rate = log(2) / medians['pro_high'])
pro_low <- rexp(n, rate = log(2) / median_pro_low)
data.frame(dll3,
x = rnorm(n),
os = ifelse(dll3 %in% 'high', os_high, os_low),
pfs = ifelse(dll3 %in% 'high', pfs_high, pfs_low),
pro = ifelse(dll3 %in% 'high', pro_high, pro_low),
os_event = 1,
pfs_event = 1,
pro_event = 1)
}
simulate <- function(fwer,
sample_size,
final_event_number,
interim_info_fraction,
prop_dll3_high,
median_soc,
median_trt){
ep_soc <- endpoint(name = c('pfs', 'os', 'pro', 'dll3', 'x'),
type = c('tte', 'tte', 'tte', 'non-tte', 'non-tte'),
readout = c(dll3 = 0, x = 0),
generator = rng,
medians = median_soc,
prop_high = prop_dll3_high)
soc <- arm(name = 'soc')
soc$add_endpoints(ep_soc)
ep_trt <- endpoint(name = c('pfs', 'os', 'pro', 'dll3', 'x'),
type = c('tte', 'tte', 'tte', 'non-tte', 'non-tte'),
readout = c(dll3 = 0, x = 0),
generator = rng,
medians = median_trt,
prop_high = prop_dll3_high)
trt <- arm(name = 'trt')
trt$add_endpoints(ep_trt)
accrual_rate <- data.frame(end_time = c(1:17, Inf),
piecewise_rate = c(1,2,5,8,12,17,22,28,32,37,40,43,46,47,50,50,51,52))
trial <- trial(
name = '1438', n_patients = sample_size, duration = 200,
enroller = StaggeredRecruiter, accrual_rate = accrual_rate,
dropout = rexp, rate = -log(1 - .15)/12,
silent = TRUE
)
trial$add_arms(sample_ratio = c(1, 1), soc, trt)
interim <- milestone(name = 'interim', when = enrollment(n = 100, dll3 == 'high', x > -2),
action = interim_action)
final <- milestone(name = 'final',
when =
eventNumber('pfs', n = 100, dll3 == 'high', x > -2) &
eventNumber('pfs', n = 150) &
eventNumber('os', n = 25, dll3 != 'high'),
action = final_action)
listener <- listener(silent = TRUE)
listener$add_milestones(interim, final)
controller <- controller(trial, listener)
controller$run(n = 10, plot_event = FALSE, silent = TRUE)
controller$get_output()
}
interim_action <- function(trial){
locked_data <- trial$get_locked_data('interim')
trial$save(value = locked_data %>% filter(dll3 == 'high' & x > -2) %>% nrow(),
name = 'n_at_lock')
}
final_action <- function(trial){
locked_data <- trial$get_locked_data('final')
tmp1 <- locked_data %>% filter(dll3 == 'high' & x > -2)
trial$save(value = sum(tmp1$pfs_event), name = 'n_pfs_high')
trial$save(value = sum(locked_data$pfs_event), name = 'n_pfs_all')
tmp2 <- locked_data %>% filter(dll3 != 'high')
trial$save(value = sum(tmp2$os_event), name = 'n_os_low')
}
sims <-
simulate(fwer = c(0.025), ## family-wise error rate for one-sided test
sample_size = c(702), ## total planned sample size
final_event_number = list(os_high = 343, os_all = 512),
interim_info_fraction = c(.68),
prop_dll3_high = c(.67),
median_soc = list(c(os_high = 13,
os_all = 13,
pfs_high = 5,
pfs_all = 5,
pro_high = 7.5,
pro_all = 7.5))[[1]],
median_trt = list(c(os_high = 19,
os_all = 17.6,
pfs_high = 7,
pfs_all = 6.5,
pro_high = 10,
pro_all = 9.7))[[1]])
expect_true(all(sims$n_at_lock == 100))
expect_true(all(sims$n_pfs_high >= 100))
expect_true(all(sims$n_pfs_all >= 150))
expect_true(all(sims$n_os_low >= 25))
expect_true(all(sims$`milestone_time_<final>` > sims$`milestone_time_<interim>`))
})
test_that('endpoint event counts work as expected when duration is adapted', {
pfs <- endpoint(name = 'pfs', type = 'tte', generator = rexp, rate = log(2)/10)
os <- endpoint(name = 'os', type = 'tte', generator = rexp, rate = log(2)/17)
or <- endpoint(name = 'or', type = 'non-tte', readout = c(or = 1), generator = rnorm)
pbo <- arm(name = 'pbo')
pbo$add_endpoints(pfs, os, or)
pfs <- endpoint(name = 'pfs', type = 'tte', generator = rexp, rate = log(2)/12)
os <- endpoint(name = 'os', type = 'tte', generator = rexp, rate = log(2)/18)
or <- endpoint(name = 'or', type = 'non-tte', readout = c(or = 1), generator = rnorm)
trt <- arm(name = 'trt')
trt$add_endpoints(pfs, os, or)
accrual_rate <- data.frame(end_time = c(1, 2, 6, 12, Inf),
piecewise_rate = c(2, 8, 20, 25, 50))
trial <- trial(
name = 'test', n_patients = 1000, duration = 30,
enroller = StaggeredRecruiter, accrual_rate = accrual_rate,
dropout = rweibull, shape = 1.32, scale = 114.4,
seed = 808715505,
silent = TRUE
)
trial$add_arms(sample_ratio = c(1, 2), pbo, trt)
action_at_interim <- function(trial){
trial$set_duration(duration = 40)
}
interim <- milestone(name = 'interim',
when = eventNumber(endpoint = 'os', n = 150),
action = action_at_interim)
listener <- listener(silent = TRUE)
listener$add_milestones(interim)
controller <- controller(trial, listener)
controller$run(plot_event = FALSE, silent = TRUE)
dat1_ <- trial$get_locked_data('interim')
expect_equal(sum(dat1_$os_event %in% 1), 150)
final <- milestone(name = 'final',
when = eventNumber(endpoint = 'os', n = 400) |
calendarTime(time = 40))
listener$add_milestones(final)
controller$run(plot_event = FALSE, silent = TRUE)
dat1 <- trial$get_locked_data('interim')
dat2 <- trial$get_locked_data('final')
expect_identical(dat1_, dat1)
expect_true(sum(dat2$os_event %in% 1) == 400 ||
all((dat2$enroll_time + dat2$os_event)[dat2$os_event %in% 1] <= 40))
tol <- 1e-6
expect_true(
dat2 %>%
filter(patient_id %in% dat1$patient_id) %>%
summarise(os = all((enroll_time + os < 30 &
os < dropout_time - tol) == (os_event == 1)),
pfs = all((enroll_time + pfs < 30 &
pfs < dropout_time - tol) == (pfs_event == 1)),
or = all((enroll_time + or_readout < 30 &
or_readout < dropout_time - tol) == !is.na(or))) %>%
apply(1, function(x){all(x)})
)
expect_true(
dat2 %>%
filter(os_event %in% 1) %>%
summarise(os = all(enroll_time + os <= 40)) %>%
apply(1, function(x){all(x)}))
expect_true(
dat2 %>%
filter(pfs_event %in% 1) %>%
summarise(pfs = all(enroll_time + pfs <= 40)) %>%
apply(1, function(x){all(x)}))
expect_true(
dat2 %>%
filter(!is.na(or)) %>%
summarise(or = all(enroll_time + or_readout <= 40)) %>%
apply(1, function(x){all(x)}))
})
test_that('endpoint event counts work as expected when an arm is removed', {
pfs <- endpoint(name = 'pfs', type = 'tte', generator = rexp, rate = log(2)/10)
os <- endpoint(name = 'os', type = 'tte', generator = rexp, rate = log(2)/17)
or <- endpoint(name = 'or', type = 'non-tte', readout = c(or = 1), generator = rnorm)
pbo <- arm(name = 'pbo')
pbo$add_endpoints(pfs, os, or)
pfs <- endpoint(name = 'pfs', type = 'tte', generator = rexp, rate = log(2)/12)
os <- endpoint(name = 'os', type = 'tte', generator = rexp, rate = log(2)/18)
or <- endpoint(name = 'or', type = 'non-tte', readout = c(or = 1), generator = rnorm)
trt1 <- arm(name = 'trt1')
trt1$add_endpoints(pfs, os, or)
pfs <- endpoint(name = 'pfs', type = 'tte', generator = rexp, rate = log(2)/13)
os <- endpoint(name = 'os', type = 'tte', generator = rexp, rate = log(2)/18.5)
or <- endpoint(name = 'or', type = 'non-tte', readout = c(or = 1), generator = rnorm)
trt2 <- arm(name = 'trt2')
trt2$add_endpoints(pfs, os, or)
accrual_rate <- data.frame(end_time = c(1, 2, 6, 12, Inf),
piecewise_rate = c(2, 8, 20, 25, 50))
trial <- trial(
name = 'test', n_patients = 1000, duration = 40,
enroller = StaggeredRecruiter, accrual_rate = accrual_rate,
dropout = rweibull, shape = 1.32, scale = 114.4,
silent = TRUE
)
trial$add_arms(sample_ratio = c(1, 1, 2), pbo, trt1, trt2)
interim1 <- milestone(name = 'interim1',
when = eventNumber(endpoint = 'or', n = 200),
action = function(trial){trial$remove_arms('trt1')})
interim2 <- milestone(name = 'interim2',
when = eventNumber(endpoint = 'pfs', n = 240) &
eventNumber(endpoint = 'os', n = 170))
final <- milestone(name = 'final',
when = calendarTime(time = 40))
listener <- listener(silent = TRUE)
listener$add_milestones(interim1, interim2, final)
controller <- controller(trial, listener)
controller$run(n = 1, plot_event = FALSE, silent = TRUE)
dat1 <- trial$get_locked_data('interim1')
dat2 <- trial$get_locked_data('interim2')
dat3 <- trial$get_locked_data('final')
remove_attr <- function(locked_data){
attr(locked_data, 'lock_time') <- NULL
attr(locked_data, 'n_enrolled_patients') <- NULL
attr(locked_data, 'milestone_name') <- NULL
locked_data
}
dat1 <- remove_attr(dat1)
dat2 <- remove_attr(dat2)
dat3 <- remove_attr(dat3)
expect_equal(sum(!is.na(dat1$or)), 200)
expect_true(sum(dat2$pfs_event %in% 1 & dat2$arm %in% c('pbo', 'trt2')) >= 240 &&
sum(dat2$os_event %in% 1 & dat2$arm %in% c('pbo', 'trt2')) >= 170 &&
(sum(dat2$pfs_event %in% 1 & dat2$arm %in% c('pbo', 'trt2')) == 240 ||
sum(dat2$os_event %in% 1 & dat2$arm %in% c('pbo', 'trt2')) == 170))
dat1_ <- dat2 %>%
filter(patient_id %in% dat1$patient_id) %>%
arrange(patient_id)
expect_equal(dat1 %>% filter(arm == 'trt1'), dat1_ %>% filter(arm == 'trt1'))
dat1__ <- dat3 %>%
filter(patient_id %in% dat1$patient_id) %>%
arrange(patient_id)
expect_equal(dat1 %>% filter(arm == 'trt1'), dat1__ %>% filter(arm == 'trt1'))
})
test_that('inclusion criteria of arm work as expected', {
rng <- function(n){
data.frame(
x = rnorm(n),
y = rbinom(n, 1, .5),
z = sample(LETTERS[1:3], n, replace = TRUE),
w = rexp(n, rate = .01),
w_event = rbinom(n, 1, .3)
)
}
ep <- endpoint(name = c('x', 'y', 'z', 'w'),
type = c('non-tte', 'non-tte', 'non-tte', 'tte'),
readout = c(x = 0, y = 0, z = 0),
generator = rng)
test <- arm(name = 'test', x > 0)
test$add_endpoints(ep)
dat <- test$generate_data(1e4)
expect_true(all(dat$x > 0))
test <- arm(name = 'test', x > 1, z %in% c('A', 'C'))
test$add_endpoints(ep)
dat <- test$generate_data(1e4)
expect_true(all(dat$x > 1) && all(dat$z %in% c('A', 'C')))
test <- arm(name = 'test', x > -0.5 | z %in% c('B', 'C'))
test$add_endpoints(ep)
dat <- test$generate_data(1e4)
expect_true(all(dat$x > -0.5 | dat$z %in% c('B', 'C')))
})
test_that('custom data can be re-used in multiple trials', {
ep <- endpoint(name = 'ep', type = 'tte', generator = rexp, rate = .1)
pbo <- arm(name = 'pbo')
pbo$add_endpoints(ep)
accrual_rate <- data.frame(end_time = c(1, 2, 6, 12, Inf),
piecewise_rate = c(2, 8, 20, 25, 50))
trial <- trial(
name = 'test', n_patients = 1000, duration = 40,
enroller = StaggeredRecruiter, accrual_rate = accrual_rate,
silent = TRUE
)
trial$add_arms(sample_ratio = 1, pbo)
trial$save_custom_data(value = list(x = 1, y = 'a'), name = 'config')
final <- milestone(name = 'final',
action = function(trial) {
trial$get_custom_data('config')},
when = calendarTime(time = 40))
listener <- listener(silent = TRUE)
listener$add_milestones(final)
controller <- controller(trial, listener)
expect_no_error(controller$run(n = 10, plot_event = FALSE, silent = TRUE))
})
test_that('trial data can be replicated', {
ep <- endpoint(name = 'ep', type = 'tte', generator = rexp, rate = .1)
pbo <- arm(name = 'pbo')
pbo$add_endpoints(ep)
accrual_rate <- data.frame(end_time = c(1, 2, 6, 12, Inf),
piecewise_rate = c(2, 8, 20, 25, 50))
trial <- trial(
name = 'test', n_patients = 1000, duration = 40,
enroller = StaggeredRecruiter, accrual_rate = accrual_rate,
silent = TRUE
)
trial$add_arms(sample_ratio = 1, pbo)
act <- function(trial){
locked_data <- trial$get_locked_data('final')
trial$save(value = median(locked_data$ep), name = 'median')
trial$save(value = mean(locked_data$ep), name = 'mean')
trial$save(value = sd(locked_data$ep), name = 'sd')
}
final <- milestone(name = 'final',
action = act,
when = calendarTime(time = 40))
listener <- listener(silent = TRUE)
listener$add_milestones(final)
controller <- controller(trial, listener)
controller$run(n = 10, plot_event = FALSE, silent = TRUE)
op10 <- controller$get_output()
op10 <- op10[order(op10$seed), ]
rownames(op10) <- NULL
## feed seeds in op10 one by one for testing purpose
seeds <- sort(op10$seed)
ops <- NULL
for(seed in seeds){
trial <- trial(
name = 'test', n_patients = 1000, duration = 40,
seed = seed,
enroller = StaggeredRecruiter, accrual_rate = accrual_rate,
silent = TRUE
)
trial$add_arms(sample_ratio = 1, pbo)
final <- milestone(name = 'final',
action = act,
when = calendarTime(time = 40))
listener <- listener(silent = TRUE)
listener$add_milestones(final)
controller <- controller(trial, listener)
controller$run(plot_event = FALSE, silent = TRUE)
ops <- rbind(ops, controller$get_output())
}
expect_identical(op10, ops)
})
test_that('fitLinear works as expected', {
ep <- endpoint(name = 'ep', type = 'tte', generator = rnorm)
pbo <- arm(name = 'pbo')
pbo$add_endpoints(ep)
ep <- endpoint(name = 'ep', type = 'tte', generator = rnorm, mean = .1)
trt <- arm(name = 'trt')
trt$add_endpoints(ep)
accrual_rate <- data.frame(end_time = c(1, 2, 6, 12, Inf),
piecewise_rate = c(2, 8, 20, 25, 50))
trial <- trial(
name = 'test', n_patients = 1000, duration = 40,
enroller = StaggeredRecruiter, accrual_rate = accrual_rate,
silent = TRUE
)
trial$add_arms(sample_ratio = c(1, 2), pbo, trt)
act <- function(trial){
locked_data <- trial$get_locked_data('final')
n <- nrow(locked_data)
locked_data$covar1 <- rnorm(n)
locked_data$covar2 <- rbinom(n, 1, .4)
## ATE is equivalent to model coefficient when no interaction term in linear regression
fit <- fitLinear(ep ~ arm + covar1 + covar2, placebo = 'pbo', data = locked_data, alternative = 'greater')
trial$save(value = fit, name = 'fitLinear_output')
fit_ <- lm(ep ~ I(arm != 'pbo') + covar1 + covar2, data =locked_data)
trial$save(value = data.frame(z = summary(fit_)$coef[2, 't value']) %>%
mutate(p = 1 - pt(z, df = fit_$df.residual - 2)) %>%
mutate(info = fit_$df.residual + fit_$rank),
name = 'lm_output')
}
final <- milestone(name = 'final',
action = act,
when = calendarTime(time = 40))
listener <- listener(silent = TRUE)
listener$add_milestones(final)
controller <- controller(trial, listener)
controller$run(n = 10, plot_event = FALSE, silent = TRUE)
op <- controller$get_output()
expect_equal(op$`fitLinear_output_<p>`, op$`lm_output_<p>`, tolerance = 1e-3)
expect_equal(op$`fitLinear_output_<z>`, op$`lm_output_<z>`, tolerance = 1e-3)
expect_equal(op$`fitLinear_output_<info>`, op$`lm_output_<info>`)
expect_true(all(op$`fitLinear_output_<arm>` == 'trt'))
expect_true(all(op$`fitLinear_output_<placebo>` == 'pbo'))
})
test_that('fitLinear can compute ATE as expected in additive model', {
ep <- endpoint(name = 'ep', type = 'non-tte', readout = c(ep = 0), generator = rnorm)
pbo <- arm(name = 'pbo')
pbo$add_endpoints(ep)
ep <- endpoint(name = 'ep', type = 'non-tte', readout = c(ep = 0), generator = rnorm, mean = .1)
trt <- arm(name = 'trt')
trt$add_endpoints(ep)
accrual_rate <- data.frame(end_time = c(1, 2, 6, 12, Inf),
piecewise_rate = c(2, 8, 20, 25, 50))
trial <- trial(
name = 'test', n_patients = 1000, duration = 40,
enroller = StaggeredRecruiter, accrual_rate = accrual_rate,
silent = TRUE
)
trial$add_arms(sample_ratio = c(1, 2), pbo, trt)
act <- function(trial){
locked_data <- trial$get_locked_data('final')
n <- nrow(locked_data)
locked_data$covar1 <- rnorm(n)
locked_data$covar2 <- rbinom(n, 1, .4)
## ATE is equivalent to model coefficient when no interaction term in linear regression
fit <- fitLinear(ep ~ arm + covar1 + covar2, placebo = 'pbo', data = locked_data, alternative = 'greater')
trial$save(value = fit, name = 'fitLinear_output')
fit_ <- lm(ep ~ I(arm != 'pbo') + covar1 + covar2, data = locked_data)
trial$save(value = data.frame(z = summary(fit_)$coef[2, 't value'],
estimate = summary(fit_)$coef[2, 'Estimate']) %>%
mutate(p = 1 - pt(z, df = fit_$df.residual - 2)) %>%
mutate(info = fit_$df.residual + fit_$rank),
name = 'lm_output')
}
final <- milestone(name = 'final',
action = act,
when = calendarTime(time = 40))
listener <- listener(silent = TRUE)
listener$add_milestones(final)
controller <- controller(trial, listener)
controller$run(n = 10, plot_event = FALSE, silent = TRUE)
op <- controller$get_output()
expect_equal(op$`fitLinear_output_<p>`, op$`lm_output_<p>`, tolerance = 1e-3)
expect_equal(op$`fitLinear_output_<z>`, op$`lm_output_<z>`, tolerance = 1e-3)
expect_equal(op$`fitLinear_output_<estimate>`, op$`lm_output_<estimate>`, tolerance = 1e-3)
expect_equal(op$`fitLinear_output_<info>`, op$`lm_output_<info>`)
expect_true(all(op$`fitLinear_output_<arm>` == 'trt'))
expect_true(all(op$`fitLinear_output_<placebo>` == 'pbo'))
})
test_that('fitLogistic can compute ATE as expected in model without covariates', {
ep <- endpoint(name = 'ep', type = 'non-tte', readout = c(ep = 0), generator = rnorm)
pbo <- arm(name = 'pbo')
pbo$add_endpoints(ep)
ep <- endpoint(name = 'ep', type = 'non-tte', readout = c(ep = 0), generator = rnorm, mean = .1)
trt <- arm(name = 'trt')
trt$add_endpoints(ep)
accrual_rate <- data.frame(end_time = c(1, 2, 6, 12, Inf),
piecewise_rate = c(2, 8, 20, 25, 50))
trial <- trial(
name = 'test', n_patients = 1000, duration = 40,
enroller = StaggeredRecruiter, accrual_rate = accrual_rate,
silent = TRUE
)
trial$add_arms(sample_ratio = c(1, 2), pbo, trt)
act <- function(trial){
locked_data <- trial$get_locked_data('final')
trial$save(value = nrow(locked_data), name = 'n')
## ATE is equivalent to log OR estimate when no covariate in logistic regression
fit_logOR <- fitLogistic(I(ep > 0) ~ arm, placebo = 'pbo',
data = locked_data, alternative = 'greater',
scale = 'log odds ratio')
trial$save(value = fit_logOR, name = 'fit_logOR')
fit_OR <- fitLogistic(I(ep > 0) ~ arm, placebo = 'pbo',
data = locked_data, alternative = 'greater',
scale = 'odds ratio')
trial$save(value = fit_OR, name = 'fit_OR')
## ATE is equivalent to ratio of arm probabilities when no covariate in logistic regression
fit_RR <- fitLogistic(I(ep > 0) ~ arm, placebo = 'pbo',
data = locked_data, alternative = 'greater',
scale = 'risk ratio')
trial$save(value = fit_RR, name = 'fit_RR')
## ATE is equivalent to difference of arm probabilities when no covariate in logistic regression
fit_RD <- fitLogistic(I(ep > 0) ~ arm, placebo = 'pbo',
data = locked_data, alternative = 'greater',
scale = 'risk difference')
trial$save(value = fit_RD, name = 'fit_RD')
fit <- glm(I(ep > 0) ~ I(arm != 'pbo'), data = locked_data, family = 'binomial')
trial$save(value = data.frame(estimate = summary(fit)$coef[2, 'Estimate'],
z = summary(fit)$coef[2, 'z value']) %>%
mutate(p = 1 - pnorm(z)) %>%
mutate(info = fit$df.residual + fit$rank),
name = 'glm_logOR')
probs <- locked_data %>%
group_by(arm) %>%
summarise(prob = mean(ep > 0))
trial$save(value = exp(summary(fit)$coef[2, 'Estimate']),
name = 'glm_OR')
trial$save(value = probs$prob[probs$arm == 'trt'] / probs$prob[probs$arm == 'pbo'],
name = 'glm_RR')
trial$save(value = probs$prob[probs$arm == 'trt'] - probs$prob[probs$arm == 'pbo'],
name = 'glm_RD')
}
final <- milestone(name = 'final',
action = act,
when = calendarTime(time = 40))
listener <- listener(silent = TRUE)
listener$add_milestones(final)
controller <- controller(trial, listener)
controller$run(n = 10, plot_event = FALSE, silent = TRUE)
op <- controller$get_output()
#################
expect_true(all(op$`fit_logOR_<arm>` == 'trt'))
expect_true(all(op$`fit_OR_<arm>` == 'trt'))
expect_true(all(op$`fit_RR_<arm>` == 'trt'))
expect_true(all(op$`fit_RD_<arm>` == 'trt'))
expect_true(all(op$`fit_logOR_<placebo>` == 'pbo'))
expect_true(all(op$`fit_OR_<placebo>` == 'pbo'))
expect_true(all(op$`fit_RR_<placebo>` == 'pbo'))
expect_true(all(op$`fit_RD_<placebo>` == 'pbo'))
expect_equal(op$`fit_logOR_<estimate>`, op$`glm_logOR_<estimate>`, tolerance = 1e-3)
expect_equal(op$`fit_logOR_<p>`, op$`glm_logOR_<p>`, tolerance = 1e-3)
expect_equal(op$`fit_OR_<p>`, op$`glm_logOR_<p>`, tolerance = 1e-3)
expect_equal(op$`fit_logOR_<z>`, op$`glm_logOR_<z>`, tolerance = 1e-3)
expect_equal(op$`fit_OR_<z>`, op$`glm_logOR_<z>`, tolerance = 1e-3)
expect_equal(op$`fit_OR_<estimate>`, op$`glm_OR`, tolerance = 1e-3)
expect_equal(op$`fit_RR_<estimate>`, op$`glm_RR`, tolerance = 1e-3)
expect_equal(op$`fit_RD_<estimate>`, op$`glm_RD`, tolerance = 1e-3)
expect_identical(op$`fit_logOR_<info>`, op$n)
expect_identical(op$`fit_logOR_<info>`, op$`fit_OR_<info>`)
expect_identical(op$`fit_logOR_<info>`, op$`fit_RR_<info>`)
expect_identical(op$`fit_logOR_<info>`, op$`fit_RD_<info>`)
})
test_that('fitLogistic can compute regression coefficient as expected in model with covariates', {
ep <- endpoint(name = 'ep', type = 'non-tte', readout = c(ep = 0), generator = rnorm)
pbo <- arm(name = 'pbo')
pbo$add_endpoints(ep)
ep <- endpoint(name = 'ep', type = 'non-tte', readout = c(ep = 0), generator = rnorm, mean = .1)
trt <- arm(name = 'trt')
trt$add_endpoints(ep)
accrual_rate <- data.frame(end_time = c(1, 2, 6, 12, Inf),
piecewise_rate = c(2, 8, 20, 25, 50))
trial <- trial(
name = 'test', n_patients = 1000, duration = 40,
enroller = StaggeredRecruiter, accrual_rate = accrual_rate,
silent = TRUE
)
trial$add_arms(sample_ratio = c(1, 2), pbo, trt)
act <- function(trial){
locked_data <- trial$get_locked_data('final')
locked_data$x <- rnorm(nrow(locked_data))
locked_data$y <- rnorm(nrow(locked_data))
locked_data$z <- rbinom(nrow(locked_data), 1, .5)
trial$save(value = nrow(locked_data), name = 'n')
fit_coef <- fitLogistic(I(ep > 0) ~ x*arm + z + arm:y, placebo = 'pbo',
data = locked_data, alternative = 'greater',
scale = 'coefficient')
fit <- glm(I(ep > 0) ~ arm*x + z + arm:y, data = locked_data,
family = binomial)
trial$save(value = fit_coef, name = 'fit_coef')
trial$save(value = data.frame(estimate = summary(fit)$coef['armtrt', 'Estimate'],
z = summary(fit)$coef['armtrt', 'z value']) %>%
mutate(p = 1 - pnorm(z)) %>%
mutate(info = fit$df.residual + fit$rank),
name = 'glm_coef')
}
final <- milestone(name = 'final',
action = act,
when = calendarTime(time = 40))
listener <- listener(silent = TRUE)
listener$add_milestones(final)
controller <- controller(trial, listener)
controller$run(n = 10, plot_event = FALSE, silent = TRUE)
op <- controller$get_output()
#################
expect_true(all(op$`fit_coef_<arm>` == 'trt'))
expect_true(all(op$`fit_coef_<placebo>` == 'pbo'))
expect_equal(op$`fit_coef_<estimate>`, op$`glm_coef_<estimate>`, tolerance = 1e-3)
expect_equal(op$`fit_coef_<p>`, op$`glm_coef_<p>`, tolerance = 1e-3)
expect_equal(op$`fit_coef_<z>`, op$`glm_coef_<z>`, tolerance = 1e-3)
expect_identical(op$`fit_coef_<info>`, op$n)
})
test_that('fitLogrank works as expected', {
ep <- endpoint(name = 'ep', type = 'tte', generator = rexp, rate = log(2)/10)
pbo <- arm(name = 'pbo')
pbo$add_endpoints(ep)
ep <- endpoint(name = 'ep', type = 'tte', generator = rexp, rate = log(2)/12)
trt <- arm(name = 'trt')
trt$add_endpoints(ep)
accrual_rate <- data.frame(end_time = c(1, 2, 6, 12, Inf),
piecewise_rate = c(2, 8, 20, 25, 50))
trial <- trial(
name = 'test', n_patients = 1000, duration = 40,
enroller = StaggeredRecruiter, accrual_rate = accrual_rate,
silent = TRUE
)
trial$add_arms(sample_ratio = c(1, 2), pbo, trt)
act <- function(trial){
locked_data <- trial$get_locked_data('final')
fit <- fitLogrank(Surv(ep, ep_event) ~ arm, placebo = 'pbo', data = locked_data, alternative = 'less')
lr <- survdiff(Surv(ep, ep_event) ~ arm, data = locked_data)
fit_ <- coxph(Surv(ep, ep_event) ~ arm, data = locked_data)
p <- fit$p
z <- sqrt(lr$chisq) * ifelse(coef(fit_)['armtrt'] > 0, 1, -1)
p_ <- pnorm(z)
trial$save(value = p, name = 'logrank_p')
trial$save(value = p_, name = 'survdiff_p')
}
final <- milestone(name = 'final',
action = act,
when = calendarTime(time = 40))
listener <- listener(silent = TRUE)
listener$add_milestones(final)
controller <- controller(trial, listener)
controller$run(n = 10, plot_event = FALSE, silent = TRUE)
op <- controller$get_output()
expect_equal(op$logrank_p, op$survdiff_p, tolerance = 1e-3)
})
test_that('fitCoxph can compute main effect of arm', {
ep <- endpoint(name = 'ep', type = 'tte', generator = rexp, rate = log(2)/10)
pbo <- arm(name = 'pbo')
pbo$add_endpoints(ep)
ep <- endpoint(name = 'ep', type = 'tte', generator = rexp, rate = log(2)/12)
trt <- arm(name = 'trt')
trt$add_endpoints(ep)
accrual_rate <- data.frame(end_time = c(1, 2, 6, 12, Inf),
piecewise_rate = c(2, 8, 20, 25, 50))
trial <- trial(
name = 'test', n_patients = 1000, duration = 40,
enroller = StaggeredRecruiter, accrual_rate = accrual_rate,
silent = TRUE
)
trial$add_arms(sample_ratio = c(1, 2), pbo, trt)
act <- function(trial){
locked_data <- trial$get_locked_data('final')
n <- nrow(locked_data)
locked_data$covar1 <- rnorm(n)
locked_data$covar2 <- rbinom(n, 1, .4)
fit <- fitCoxph(Surv(ep, ep_event) ~ covar2 + arm*covar1 + covar1:covar2,
placebo = 'pbo', data = locked_data, alternative = 'less',
scale = 'hazard ratio')
trial$save(value = fit, name = 'fitCoxph_output')
fit_ <- coxph(Surv(ep, ep_event) ~ I(arm != 'pbo')*covar1 + covar1:covar2 + covar2, data = locked_data)
trial$save(value = data.frame(z = summary(fit_)$coef[1, 'z'],
estimate = exp(summary(fit_)$coef[1, 'coef'])) %>%
mutate(p = pnorm(z)) %>%
mutate(info = sum(locked_data$ep_event)),
name = 'coxph_output')
}
final <- milestone(name = 'final',
action = act,
when = calendarTime(time = 40))
listener <- listener(silent = TRUE)
listener$add_milestones(final)
controller <- controller(trial, listener)
controller$run(n = 10, plot_event = FALSE, silent = TRUE)
op <- controller$get_output()
expect_equal(op$`fitCoxph_output_<p>`, op$`coxph_output_<p>`, tolerance = 1e-3)
expect_equal(op$`fitCoxph_output_<z>`, op$`coxph_output_<z>`, tolerance = 1e-3)
expect_equal(op$`fitCoxph_output_<estimate>`, op$`coxph_output_<estimate>`, tolerance = 1e-3)
expect_equal(op$`fitCoxph_output_<info>`, op$`coxph_output_<info>`)
expect_true(all(op$`fitCoxph_output_<arm>` == 'trt'))
expect_true(all(op$`fitCoxph_output_<placebo>` == 'pbo'))
})
test_that('sample ratio can be updated to switch between permuted block and sample()', {
ep <- endpoint(name = 'os', type = 'non-tte', readout = c(os = 0), generator = rexp, rate = log(2)/10)
pbo <- arm(name = 'pbo')
pbo$add_endpoints(ep)
ep <- endpoint(name = 'os', type = 'non-tte', readout = c(os = 0), generator = rexp, rate = log(2)/11)
low <- arm(name = 'low')
low$add_endpoints(ep)
ep <- endpoint(name = 'os', type = 'non-tte', readout = c(os = 0), generator = rexp, rate = log(2)/12)
med <- arm(name = 'med')
med$add_endpoints(ep)
ep <- endpoint(name = 'os', type = 'non-tte', readout = c(os = 0), generator = rexp, rate = log(2)/13)
high <- arm(name = 'high')
high$add_endpoints(ep)
accrual_rate <- data.frame(end_time = c(10, Inf),
piecewise_rate = c(200, 200))
trial <- trial(
name = 'test', n_patients = 1e4, duration = 52,
enroller = StaggeredRecruiter, accrual_rate = accrual_rate,
silent = TRUE
)
trial$add_arms(sample_ratio = c(1, 1, 1, 1), pbo, low, med, high)
action1 <- function(trial){
dat1 <- trial$get_locked_data('interim1')
prob <- prop.table(trial$get_sample_ratio())
trial$save(value = chisq.test(table(dat1$arm)[names(prob)], p = prob)$p.value,
name = 'stage1')
trial$update_sample_ratio(c('med', 'high'), c(2, 2))
}
interim1 <- milestone(name = 'interim1',
when = eventNumber('os', n = 2000),
action = action1
)
action2 <- function(trial){
dat1 <- trial$get_locked_data('interim1')
dat2 <- trial$get_locked_data('interim2') %>%
filter(!(patient_id %in% dat1$patient_id))
prob <- prop.table(trial$get_sample_ratio())
trial$save(value = chisq.test(table(dat2$arm)[names(prob)], p = prob)$p.value,
name = 'stage2')
trial$update_sample_ratio(c('low', 'high'), c(.5, 2.5))
}
interim2 <- milestone(name = 'interim2',
when = eventNumber('os', 4000),
action = action2
)
action3 <- function(trial){
dat2 <- trial$get_locked_data('interim2')
dat3 <- trial$get_locked_data('interim3') %>%
filter(!(patient_id %in% dat2$patient_id))
prob <- prop.table(trial$get_sample_ratio())
trial$save(value = chisq.test(table(dat3$arm)[names(prob)], p = prob)$p.value,
name = 'stage3')
trial$update_sample_ratio(c('low', 'high'), c(1.5, 3))
}
interim3 <- milestone(name = 'interim3',
when = eventNumber('os', 6000),
action = action3
)
action4 <- function(trial){
dat3 <- trial$get_locked_data('interim3')
dat4 <- trial$get_locked_data('final') %>%
filter(!(patient_id %in% dat3$patient_id))
prob <- prop.table(trial$get_sample_ratio())
trial$save(value = chisq.test(table(dat4$arm)[names(prob)], p = prob)$p.value,
name = 'stage4')
}
final <- milestone(name = 'final', when = calendarTime(time = 52),
action = action4)
listener <- listener(silent = TRUE)
listener$add_milestones(interim1, interim2, interim3, final)
controller <- controller(trial, listener)
controller$run(n = 10, plot_event = FALSE, silen = TRUE)
expect_true(all(controller$get_output() %>% select(contains('stage')) > .1/10))
})
test_that('milestone can be triggerd when all patients have received treatment for a while', {
ep <- endpoint(name = 'x', type = 'tte', generator = rexp, rate = log(2)/10)
pbo <- arm(name = 'pbo')
pbo$add_endpoints(ep)
ep <- endpoint(name = 'x', type = 'tte', generator = rexp, rate = log(2)/12)
trt <- arm(name = 'trt')
trt$add_endpoints(ep)
accrual_rate <- data.frame(end_time = c(6, 12, 16, Inf),
piecewise_rate = c(20, 30, 40, 60))
## enrollment of 580 patients will be done by the 18th month
## if min treatment duration is 2 months, then triggering time would be 20
trial <- trial(
name = 'test', n_patients = 580, duration = 25,
enroller = StaggeredRecruiter, accrual_rate = accrual_rate,
dropout = rexp, rate = -log(1 - .08)/2,
silent = TRUE
)
trial$add_arms(sample_ratio = c(1, 2), pbo, trt)
final <- milestone(name = 'final',
when = enrollment(n = 580, min_treatment_duration = 2))
listener <- listener(silent = TRUE)
listener$add_milestones(final)
controller <- controller(trial, listener)
controller$run(n = 10, plot_event = FALSE, silen = TRUE)
expect_true(all(controller$get_output('milestone_time_<final>') - 19.98333 < .001))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.