Nothing
make.thresholds.default <- function(item.params, design.matrix = "normal", make.from = "deltas", theta.interval = c(-10, 10), throld = 0.5,
alpha = 1, c.params = 0, ...) {
#print("default")
# Provides a predicted probability of a given response for a polytomous
# item. Mostly used in other functions.
predicted.prob = function(theta, response, design.matrix, parameters, slope) {
numerator = exp(slope * (theta * (response - 1) + sum(parameters * design.matrix[response, ])))
denominator = 0
for (k in 1:nrow(design.matrix)) {
denominator = denominator + exp(slope * (theta * (k - 1) + sum(parameters * design.matrix[k, ])))
}
return(numerator/denominator)
}
throlds.minimize = function(theta, threshold, slope) {
numerator = exp(slope * (theta - threshold))
denominator = 1 + exp(slope * (theta - threshold))
prob <- numerator/denominator
return((prob - throld)^2)
}
# The function passed to R's 'optimize' function. Finds the cumulative
# predicted probability of a response, then returns (predict P - .5)^2.
# Minimizing this function finds the Thurstone threshold.
minimize.fun = function(theta, response, design.matrix, parameters, slope, guess) {
max.score = nrow(design.matrix)
categories = max.score:response
predictions = rep(NA, times = max.score)
for (x in categories) {
predictions[x] = guess + (1 - guess) * predicted.prob(theta, x, design.matrix, parameters, slope)
}
total = sum(predictions, na.rm = TRUE)
sq.err = (total - throld)^2
return(sq.err)
}
# First creates an item design matrix if one not provided. Options
# are "normal", "conquest", and an actual matrix. Then minimizes
# 'minimize.fun' for each threshold for the item.
get.thresholds = function(parameters, design.matrix = "normal", theta.interval = c(-10, 10), slope, guess) {
#print(parameters)
#print("get")
parameters = as.numeric(parameters)
max.length <- length(parameters)
parameters = parameters[!is.na(parameters)]
n.parameters = length(parameters)
thresholds = rep(NA, times = max.length)
if(make.from == "deltas") {
n.categories = n.parameters + 1
if (is.character(design.matrix)) {
if (design.matrix == "conquest") {
design.matrix = matrix(0, ncol = n.parameters, nrow = n.categories)
design.matrix[, 1] = -1 * (1:n.categories - 1)
i = 2
while (i <= n.categories - 1) {
design.matrix[i, 2:i] = -1
i = i + 1
}
} else {
design.matrix = matrix(0, ncol = n.parameters, nrow = n.categories)
i = 2
while (i <= n.categories) {
design.matrix[i, 1:(i - 1)] = -1
i = i + 1
}
}
#print(design.matrix)
}
for (response in 2:n.categories) {
opti = optimize(minimize.fun, interval = theta.interval, response = response, design.matrix = design.matrix, parameters = parameters,
slope = slope, guess = guess)
thresholds[response - 1] = opti$minimum
if (opti$objective > 10^(-5))
message(paste("objective = ", opti$objective))
}
}
else if(make.from == "thresholds"){
for (response in 1:n.parameters) {
opti <- optimize(throlds.minimize,interval = theta.interval, threshold = parameters[response], slope = slope)
thresholds[response] <- opti$minimum
if (opti$objective > 10^(-5))
message(paste("objective = ", opti$objective))
}
}
return(thresholds)
}
# Accepts a matrix of item parameters (rows are items) and feeds the items
# to 'get.thresholds'. NAs are fine in the parameter.matrix, allowing
# items to have differing numbers of categories. design.matrix may be a
# single choice for all items or a list of matrices, one for each item.
apply.thresholds = function(parameter.matrix, design.matrix = "normal", theta.interval = c(-10, 10), slope = slope, guess = guess) {
threshold.matrix <- as.matrix(mapply(get.thresholds, as.data.frame(t(parameter.matrix)), t(design.matrix), slope = slope, guess = guess, MoreArgs = list(theta.interval = theta.interval)))
if (NCOL(threshold.matrix) > 1)
threshold.matrix <- t(threshold.matrix)
return(threshold.matrix)
}
if(any(c.params != 0)) {
if(make.from != "deltas")
stop("Cannot run 3PL using threshold inputs")
if(NCOL(item.params) != 1)
stop("Cannot run polytomous 3PL")
}
if(make.from == "deltas")
message("Assuming partial credit model")
else if(make.from == "thresholds")
message("Assuming graded response model")
return(apply.thresholds(item.params, design.matrix, theta.interval, alpha, c.params))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.