dudi.fca: Fuzzy Correspondence Analysis and Fuzzy Principal Components...

dudi.fcaR Documentation

Fuzzy Correspondence Analysis and Fuzzy Principal Components Analysis

Description

Theses functions analyse a table of fuzzy variables.

A fuzzy variable takes values of type a=(a1,…,ak) giving the importance of k categories.

A missing data is denoted (0,...,0).
Only the profile a/sum(a) is used, and missing data are replaced by the mean profile of the others in the function prep.fuzzy.var. See ref. for details.

Usage

prep.fuzzy.var (df, col.blocks, row.w = rep(1, nrow(df)))
dudi.fca(df, scannf = TRUE, nf = 2)
dudi.fpca(df, scannf = TRUE, nf = 2)

Arguments

df

a data frame containing positive or null values

col.blocks

a vector containing the number of categories for each fuzzy variable

row.w

a vector of row weights

scannf

a logical value indicating whether the eigenvalues bar plot should be displayed

nf

if scannf FALSE, an integer indicating the number of kept axes

Value

The function prep.fuzzy.var returns a data frame with the attribute col.blocks. The function dudi.fca returns a list of class fca and dudi (see dudi) containing also

cr

a data frame which rows are the blocs, columns are the kept axes, and values are the correlation ratios.

The function dudi.fpca returns a list of class pca and dudi (see dudi) containing also

  1. cent

  2. norm

  3. blo

  4. indica

  5. FST

  6. inertia

Author(s)

Daniel Chessel
Anne-Béatrice Dufour anne-beatrice.dufour@univ-lyon1.fr

References

Chevenet, F., Dolédec, S. and Chessel, D. (1994) A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology, 31, 295–309.

Examples

w1 <- matrix(c(1,0,0,2,1,1,0,2,2,0,1,0,1,1,1,0,1,3,1,0), 4, 5)
w1 <- data.frame(w1) 
w2 <- prep.fuzzy.var(w1, c(2, 3))
w1
w2 
attributes(w2)

data(bsetal97)
w <- prep.fuzzy.var(bsetal97$biol, bsetal97$biol.blo)

if(adegraphicsLoaded()) {
  g1 <- plot(dudi.fca(w, scann = FALSE, nf = 3), plabels.cex = 1.5)
} else {
  scatter(dudi.fca(w, scann = FALSE, nf = 3), csub = 3, clab.moda = 1.5)
  scatter(dudi.fpca(w, scann = FALSE, nf = 3), csub = 3, clab.moda = 1.5)
}

## Not run: 
w1 <- prep.fuzzy.var(bsetal97$biol, bsetal97$biol.blo)
w2 <- prep.fuzzy.var(bsetal97$ecol, bsetal97$ecol.blo)
d1 <- dudi.fca(w1, scannf = FALSE, nf = 3)
d2 <- dudi.fca(w2, scannf = FALSE, nf = 3)
plot(coinertia(d1, d2, scannf = FALSE))

## End(Not run)


ade4 documentation built on Feb. 16, 2023, 7:58 p.m.

Related to dudi.fca in ade4...