Nothing
#' @title MCMC Analysis for Langmuir Isotherm Linear (Form 3) Model
#' @name mcmc_langmuirLM3
#' @description
#' Performs Bayesian parameter estimation using Markov Chain Monte Carlo (MCMC) to estimate the parameters of the Langmuir isotherm using its third linear form:
#' Qe = Qmax - (1 / b) * (Qe / Ce)
#' This method provides a probabilistic interpretation of the model parameters and accounts for their uncertainties.
#' It supports multiple MCMC chains and computes convergence diagnostics (Gelman-Rubin).
#' @param Ce Numeric vector of equilibrium concentrations.
#' @param Qe Numeric vector of adsorbed amounts.
#' @param burnin Integer specifying the number of burn-in iterations (default is 1000).
#' @param mcmc Integer specifying the total number of MCMC iterations (default is 5000).
#' @param thin Integer specifying the thinning interval (default is 10).
#' @param verbose Integer controlling the frequency of progress updates (default is 100).
#' @param plot Logical; if TRUE, trace and density plots of the MCMC chains are shown (default is FALSE).
#' @param n_chains Number of independent MCMC chains (default = 2).
#' @param seed Optional integer for reproducibility.
#' @import MCMCpack
#' @import stats
#' @import coda
#' @import graphics
#' @return A list containing:
#' \describe{
#' \item{mcmc_results}{Combined posterior samples (mcmc.list).}
#' \item{Qmax_mean}{Posterior mean of Qmax.}
#' \item{b_mean}{Posterior mean of b.}
#' \item{slope_mean}{Posterior mean of slope (-1/b).}
#' \item{intercept_mean}{Posterior mean of Qmax.}
#' \item{slope_sd}{Standard deviation of slope.}
#' \item{intercept_sd}{Standard deviation of intercept.}
#' \item{slope_ci}{95\% credible interval for slope.}
#' \item{intercept_ci}{95\% credible interval for intercept.}
#' \item{gelman_diag}{Gelman-Rubin convergence diagnostic.}
#' \item{mcmc_summary}{Summary of main chain.}
#' }
#' @examples Ce <- c(0.01353, 0.04648, 0.13239, 0.27714, 0.41600, 0.63607, 0.80435, 1.10327, 1.58223)
#' @examples Qe <- c(0.03409, 0.06025, 0.10622, 0.12842, 0.15299, 0.15379, 0.15735, 0.15735, 0.16607)
#' @examples
#' mcmc_langmuirLM3(Ce, Qe, burnin = 1000, mcmc = 10000, thin = 10,
#' verbose = 100, plot = TRUE, n_chains = 2, seed = 123)
#' @author Paul Angelo C. Manlapaz
#' @references Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (1995). \emph{Markov Chain Monte Carlo in Practice}. Chapman and Hall/CRC.
#' @importFrom MCMCpack MCMCregress
#' @importFrom coda mcmc.list traceplot densplot gelman.diag
#' @importFrom stats quantile
#' @importFrom graphics par abline legend
#' @export
utils::globalVariables(c("Qe", "Qe_by_Ce"))
mcmc_langmuirLM3 <- function(Ce, Qe,
burnin = 1000,
mcmc = 5000,
thin = 10,
verbose = 100,
plot = FALSE,
n_chains = 2,
seed = NULL) {
# Check required packages
if (!requireNamespace("MCMCpack", quietly = TRUE)) {
stop("Package 'MCMCpack' required but not installed.")
}
if (!requireNamespace("coda", quietly = TRUE)) {
stop("Package 'coda' required but not installed.")
}
# Validate input data
if (any(Qe <= 0)) stop("All Qe values must be positive.")
if (any(Ce <= 0)) stop("All Ce values must be positive.")
# Prepare data frame with predictor variable Qe/Ce
Qe_by_Ce <- Qe / Ce
data <- data.frame(Qe = Qe, Qe_by_Ce = Qe_by_Ce)
# Initialize list to store MCMC chains
chains <- vector("list", n_chains)
# Run MCMC chains with independent seeds if seed is provided
for (i in seq_len(n_chains)) {
if (!is.null(seed)) set.seed(seed + i)
chains[[i]] <- MCMCpack::MCMCregress(Qe ~ Qe_by_Ce,
data = data,
burnin = burnin,
mcmc = mcmc,
thin = thin,
verbose = verbose,
progressbar = TRUE)
}
# Combine chains into an mcmc.list object for diagnostics and plotting
mcmc_list <- coda::mcmc.list(lapply(chains, coda::mcmc))
main_chain <- chains[[1]]
# Extract posterior summaries for intercept (Qmax) and slope (-1/b)
intercept_mean <- mean(main_chain[, 1]) # Qmax
slope_mean <- mean(main_chain[, 2]) # -1/b
intercept_sd <- sd(main_chain[, 1])
slope_sd <- sd(main_chain[, 2])
intercept_ci <- stats::quantile(main_chain[, 1], probs = c(0.025, 0.975))
slope_ci <- stats::quantile(main_chain[, 2], probs = c(0.025, 0.975))
# Calculate Qmax and b from regression parameters
Qmax_mean <- intercept_mean
b_mean <- -1 / slope_mean
# Compute Gelman-Rubin diagnostic, handle errors gracefully
gelman_diag <- tryCatch(
coda::gelman.diag(mcmc_list, autoburnin = FALSE),
error = function(e) {
warning("Gelman-Rubin diagnostic failed: ", e$message)
NULL
}
)
# Plot trace and density plots if requested
if (plot) {
oldpar <- graphics::par(no.readonly = TRUE)
on.exit(graphics::par(oldpar), add = TRUE)
param_names <- colnames(mcmc_list[[1]])
for (param in param_names) {
values <- unlist(lapply(mcmc_list, function(chain) chain[, param]))
post_mean <- mean(values)
post_sd <- sd(values)
graphics::par(mfrow = c(1, 1), mar = c(4, 4, 2, 1))
coda::traceplot(mcmc_list[, param], main = paste("Traceplot:", param))
graphics::abline(h = post_mean, col = "#FF6347", lwd = 2, lty = 2)
graphics::legend("topleft",
legend = sprintf("Posterior Mean = %.4f\nPosterior SD = %.4f", post_mean, post_sd),
col = "#FF6347", lty = 2, lwd = 2, bty = "n", cex = 0.8)
coda::densplot(mcmc_list[, param], main = paste("Density:", param))
graphics::abline(v = post_mean, col = "#FF6347", lwd = 2, lty = 2)
graphics::legend("topright",
legend = sprintf("Posterior Mean = %.4f\nPosterior SD = %.4f", post_mean, post_sd),
col = "#FF6347", lty = 2, lwd = 2, bty = "n", cex = 0.8)
}
}
# Return comprehensive list of results and diagnostics
return(list(
mcmc_results = mcmc_list,
Qmax_mean = Qmax_mean,
b_mean = b_mean,
slope_mean = slope_mean,
intercept_mean = intercept_mean,
slope_sd = slope_sd,
intercept_sd = intercept_sd,
slope_ci = slope_ci,
intercept_ci = intercept_ci,
gelman_diag = gelman_diag,
mcmc_summary = summary(main_chain)
))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.