Nothing
LSD.test <-
function (y, trt, DFerror, MSerror, alpha = 0.05, p.adj = c("none","holm","hommel",
"hochberg", "bonferroni", "BH", "BY", "fdr"), group = TRUE, main = NULL,console=FALSE)
{
p.adj <- match.arg(p.adj)
clase <- c("aov", "lm")
name.y <- paste(deparse(substitute(y)))
name.t <- paste(deparse(substitute(trt)))
if(is.null(main))main<-paste(name.y,"~", name.t)
if ("aov" %in% class(y) | "lm" %in% class(y)) {
if(is.null(main))main<-y$call
A <- y$model
DFerror <- df.residual(y)
MSerror <- deviance(y)/DFerror
y <- A[, 1]
ipch <- pmatch(trt, names(A))
nipch<- length(ipch)
for(i in 1:nipch){
if (is.na(ipch[i]))
return(if(console)cat("Name: ", trt, "\n", names(A)[-1], "\n"))
}
name.t<- names(A)[ipch][1]
trt <- A[, ipch]
if (nipch > 1){
trt <- A[, ipch[1]]
for(i in 2:nipch){
name.t <- paste(name.t,names(A)[ipch][i],sep=":")
trt <- paste(trt,A[,ipch[i]],sep=":")
}}
name.y <- names(A)[1]
}
junto <- subset(data.frame(y, trt), is.na(y) == FALSE)
Mean<-mean(junto[,1])
CV<-sqrt(MSerror)*100/Mean
medians<-tapply.stat(junto[,1],junto[,2],stat="median")
for(i in c(1,5,2:4)) {
x <- tapply.stat(junto[,1],junto[,2],function(x)quantile(x)[i])
medians<-cbind(medians,x[,2])
}
medians<-medians[,3:7]
names(medians)<-c("Min","Max","Q25","Q50","Q75")
means <- tapply.stat(junto[, 1], junto[, 2], stat = "mean")
sds <- tapply.stat(junto[, 1], junto[, 2], stat = "sd")
nn <- tapply.stat(junto[, 1], junto[, 2], stat = "length")
std.err <- sqrt(MSerror)/sqrt(nn[, 2]) # change sds[,2]
Tprob <- qt(1 - alpha/2, DFerror)
LCL <- means[, 2] - Tprob * std.err
UCL <- means[, 2] + Tprob * std.err
means <- data.frame(means, std=sds[,2], r = nn[, 2], se=std.err,
LCL, UCL,medians)
names(means)[1:2] <- c(name.t, name.y)
ntr <- nrow(means)
nk <- choose(ntr, 2)
if (p.adj != "none") {
a <- 1e-06
b <- 1
for (i in 1:100) {
x <- (b + a)/2
xr <- rep(x, nk)
d <- p.adjust(xr, p.adj)[1] - alpha
ar <- rep(a, nk)
fa <- p.adjust(ar, p.adj)[1] - alpha
if (d * fa < 0)
b <- x
if (d * fa > 0)
a <- x
}
Tprob <- qt(1 - x/2, DFerror)
}
nr <- unique(nn[, 2])
if(console){
cat("\nStudy:", main)
if(console)cat("\n\nLSD t Test for", name.y, "\n")
if (p.adj != "none")cat("P value adjustment method:", p.adj, "\n")
cat("\nMean Square Error: ", MSerror, "\n\n")
cat(paste(name.t, ",", sep = ""), " means and individual (",
(1 - alpha) * 100, "%) CI\n\n")
print(data.frame(row.names = means[,1], means[,-1]))
cat("\nAlpha:", alpha, "; DF Error:", DFerror)
cat("\nCritical Value of t:", Tprob, "\n")
}
statistics<-data.frame(MSerror=MSerror,Df=DFerror,Mean=Mean,CV=CV)
if (length(nr) == 1) LSD <- Tprob * sqrt(2 * MSerror/nr)
if ( group & length(nr) == 1 & console) {
if(p.adj=="none") cat("\nleast Significant Difference:",LSD,"\n")
else cat("\nMinimum Significant Difference:",LSD,"\n")
}
if ( group & length(nr) != 1 & console)
cat("\nGroups according to probability of means differences and alpha level(",alpha,")\n")
if ( length(nr) == 1 & p.adj=="none") statistics<-data.frame(statistics, t.value=Tprob,LSD=LSD)
if ( length(nr) == 1 & p.adj!="none") statistics<-data.frame(statistics, t.value=Tprob,MSD=LSD)
LSD=" "
comb <- utils::combn(ntr, 2)
nn <- ncol(comb)
dif <- rep(0, nn)
pvalue <- dif
sdtdif <- dif
sig <- rep(" ", nn)
for (k in 1:nn) {
i <- comb[1, k]
j <- comb[2, k]
dif[k] <-means[i, 2] - means[j, 2]
sdtdif[k] <- sqrt(MSerror * (1/means[i, 4] + 1/means[j,4]))
pvalue[k] <- 2 * (1 - pt(abs(dif[k])/sdtdif[k], DFerror))
}
if (p.adj != "none")
pvalue <- p.adjust(pvalue, p.adj)
pvalue <- round(pvalue,4)
for (k in 1:nn) {
if (pvalue[k] <= 0.001)
sig[k] <- "***"
else if (pvalue[k] <= 0.01)
sig[k] <- "**"
else if (pvalue[k] <= 0.05)
sig[k] <- "*"
else if (pvalue[k] <= 0.1)
sig[k] <- "."
}
tr.i <- means[comb[1, ], 1]
tr.j <- means[comb[2, ], 1]
LCL <- dif - Tprob * sdtdif
UCL <- dif + Tprob * sdtdif
comparison <- data.frame(difference = dif, pvalue = pvalue, "signif."=sig, LCL, UCL)
if (p.adj !="bonferroni" & p.adj !="none"){
comparison<-comparison[,1:3]
# statistics<-statistics[,1:4]
}
rownames(comparison) <- paste(tr.i, tr.j, sep = " - ")
if (!group) {
if(console){
cat("\nComparison between treatments means\n\n")
print(comparison)
}
groups <- NULL
# statistics<-statistics[,1:4]
}
if (group) {
comparison=NULL
# Matriz de probabilidades
Q<-matrix(1,ncol=ntr,nrow=ntr)
p<-pvalue
k<-0
for(i in 1:(ntr-1)){
for(j in (i+1):ntr){
k<-k+1
Q[i,j]<-p[k]
Q[j,i]<-p[k]
}
}
groups <- orderPvalue(means[, 1], means[, 2],alpha, Q,console)
names(groups)[1]<-name.y
if(console) {
cat("\nTreatments with the same letter are not significantly different.\n\n")
print(groups)
}
}
parameters<-data.frame(test="Fisher-LSD",p.ajusted=p.adj,name.t=name.t,ntr = ntr,alpha=alpha)
rownames(parameters)<-" "
rownames(statistics)<-" "
rownames(means)<-means[,1]
means<-means[,-1]
output<-list(statistics=statistics,parameters=parameters,
means=means,comparison=comparison,groups=groups)
class(output)<-"group"
invisible(output)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.