tests/testthat/test-SeriesAggreg.R

context("SeriesAggreg")

## load catchment data
data(L0123002)

test_that("No warning with InputsModel Cemaneige'", {
  InputsModel <- CreateInputsModel(
    FUN_MOD = RunModel_CemaNeige,
    DatesR = BasinObs$DatesR,
    Precip = BasinObs$P,
    TempMean = BasinObs$T,
    ZInputs = BasinInfo$HypsoData[51],
    HypsoData = BasinInfo$HypsoData,
    NLayers = 5
  )
  # Expect no warning: https://stackoverflow.com/a/33638939/5300212
  expect_warning(SeriesAggreg(InputsModel, Format = "%m"), regexp = NA)
})


test_that("Warning: deprecated 'TimeFormat' argument", {
  InputsModel <- CreateInputsModel(
    FUN_MOD = RunModel_GR4J,
    DatesR = BasinObs$DatesR,
    Precip = BasinObs$P,
    PotEvap = BasinObs$E
  )
  expect_warning(
    SeriesAggreg(InputsModel, Format = "%Y%m", TimeFormat = "daily"),
    regexp = "deprecated 'TimeFormat' argument"
  )
})


test_that("Warning: deprecated 'NewTimeFormat' argument: please use 'Format' instead", {
  InputsModel <- CreateInputsModel(
    FUN_MOD = RunModel_GR4J,
    DatesR = BasinObs$DatesR,
    Precip = BasinObs$P,
    PotEvap = BasinObs$E
  )
  expect_warning(
    SeriesAggreg(InputsModel, NewTimeFormat = "monthly"),
    regexp = "deprecated 'NewTimeFormat' argument: please use 'Format' instead"
  )
})


test_that("Warning: deprecated 'NewTimeFormat' argument: 'Format' argument is used instead", {
  InputsModel <- CreateInputsModel(
    FUN_MOD = RunModel_GR4J,
    DatesR = BasinObs$DatesR,
    Precip = BasinObs$P,
    PotEvap = BasinObs$E
  )
  expect_warning(
    SeriesAggreg(InputsModel, Format = "%Y%m", NewTimeFormat = "monthly"),
    regexp = "deprecated 'NewTimeFormat' argument: 'Format' argument is used instead"
  )
})


test_that("Check SeriesAggreg output values on yearly aggregation", {
  TabSeries <- data.frame(
    DatesR = BasinObs$DatesR,
    P = BasinObs$P,
    E = BasinObs$E,
    Qmm = BasinObs$Qmm
  )
  GoodValues <- apply(
    BasinObs[
      BasinObs$DatesR >= as.POSIXct("1984-09-01", tz = "UTC") &
        BasinObs$DatesR < as.POSIXct("1985-09-01", tz = "UTC"),
      c("P", "E", "Qmm")
    ],
    MARGIN = 2,
    FUN = sum
  )
  TestedValues <- unlist(SeriesAggreg(
    TabSeries,
    Format = "%Y",
    YearFirstMonth = 9,
    ConvertFun = rep("sum", 3)
  )[1, c("P", "E", "Qmm")])
  expect_equal(GoodValues, TestedValues)
})


test_that("Regime calculation should switch ConvertFun to 'mean' for InputsModel", {
  InputsModel <- CreateInputsModel(
    FUN_MOD = RunModel_GR4J,
    DatesR = BasinObs$DatesR,
    Precip = BasinObs$P,
    PotEvap = BasinObs$E
  )
  expect_equal(
    SeriesAggreg(InputsModel, Format = "%m")$Precip,
    SeriesAggreg(
      BasinObs[, c("DatesR", "P")],
      Format = "%m",
      ConvertFun = "mean"
    )$P
  )
})


test_that("No DatesR should warning", {
  TabSeries <- list(
    Dates = BasinObs$DatesR,
    P = BasinObs$P,
    E = BasinObs$E,
    Qmm = BasinObs$Qmm
  )
  expect_warning(
    SeriesAggreg(TabSeries, Format = "%Y%m", ConvertFun = "sum"),
    regexp = "has been automatically chosen"
  )
})


test_that("Check SeriesAggreg.list 'DatesR' argument", {
  InputsModel <- CreateInputsModel(
    FUN_MOD = RunModel_GR4J,
    DatesR = BasinObs$DatesR,
    Precip = BasinObs$P,
    PotEvap = BasinObs$E
  )
  DatesR <- InputsModel$DatesR
  # No InputsModel$DatesR
  InputsModel$DatesR <- NULL
  expect_error(SeriesAggreg(InputsModel, Format = "%Y%m"), regexp = "'POSIXt'")
  # Other list item chosen
  InputsModel$SuperDates <- DatesR
  expect_warning(
    SeriesAggreg(InputsModel, Format = "%Y%m"),
    regexp = "SuperDates"
  )
  # Wrong InputsModel$DatesR
  InputsModel$DatesR <- BasinObs$P
  expect_error(SeriesAggreg(InputsModel, Format = "%Y%m"), regexp = "'POSIXt'")
})


test_that("Check SeriesAggreg.list with embedded lists", {
  InputsModel <- CreateInputsModel(
    FUN_MOD = RunModel_CemaNeige,
    DatesR = BasinObs$DatesR,
    Precip = BasinObs$P,
    TempMean = BasinObs$T,
    ZInputs = BasinInfo$HypsoData[51],
    HypsoData = BasinInfo$HypsoData,
    NLayers = 5
  )
  I2 <- SeriesAggreg(InputsModel, Format = "%Y%m")
  expect_equal(length(I2$ZLayers), 5)
  expect_null(I2$LayerPrecip$DatesR)
  expect_equal(length(I2$DatesR), length(I2$LayerPrecip$L1))
})


test_that("Check SeriesAggreg.outputsModel", {
  InputsModel <- CreateInputsModel(
    FUN_MOD = RunModel_CemaNeigeGR4J,
    DatesR = BasinObs$DatesR,
    Precip = BasinObs$P,
    PotEvap = BasinObs$E,
    TempMean = BasinObs$T,
    ZInputs = median(BasinInfo$HypsoData),
    HypsoData = BasinInfo$HypsoData,
    NLayers = 5
  )

  ## run period selection
  Ind_Run <- seq(
    which(format(BasinObs$DatesR, format = "%Y-%m-%d") == "1990-01-01"),
    which(format(BasinObs$DatesR, format = "%Y-%m-%d") == "1999-12-31")
  )

  ## preparation of the RunOptions object
  suppressWarnings(
    RunOptions <- CreateRunOptions(
      FUN_MOD = RunModel_CemaNeigeGR4J,
      InputsModel = InputsModel,
      IndPeriod_Run = Ind_Run
    )
  )

  ## simulation
  Param <- c(
    X1 = 408.774,
    X2 = 2.646,
    X3 = 131.264,
    X4 = 1.174,
    CNX1 = 0.962,
    CNX2 = 2.249
  )
  OutputsModel <- RunModel_CemaNeigeGR4J(
    InputsModel = InputsModel,
    RunOptions = RunOptions,
    Param = Param
  )

  O2 <- SeriesAggreg(OutputsModel, Format = "%Y%m")
  expect_equal(length(O2$StateEnd), 3)
  expect_equal(length(O2$DatesR), length(O2$CemaNeigeLayers$Layer01$Pliq))
})


test_that("Check data.frame handling in SeriesAggreg.list", {
  InputsModelDown1 <- CreateInputsModel(
    FUN_MOD = RunModel_GR4J,
    DatesR = BasinObs$DatesR,
    Precip = BasinObs$P,
    PotEvap = BasinObs$E,
    Qupstream = matrix(BasinObs$Qmm, ncol = 1),
    # Upstream observed flow
    LengthHydro = 100,
    # Distance between upstream catchment outlet and the downstream one in km
    BasinAreas = c(180, 180) # Upstream and downstream areas in km²
  )
  expect_warning(SeriesAggreg(InputsModelDown1, Format = "%Y%m"), regexp = NA)
  I2 <- SeriesAggreg(InputsModelDown1, Format = "%Y%m")
  expect_equal(length(I2$DatesR), nrow(I2$Qupstream))
  InputsModelDown1$Qupstream <- InputsModelDown1$Qupstream[-1, , drop = FALSE]
  expect_warning(
    SeriesAggreg(InputsModelDown1, Format = "%Y%m"),
    regexp = "it will be ignored in the aggregation"
  )
})


test_that("SeriesAggreg from and to the same time step should return initial time series", {
  InputsModel <- CreateInputsModel(
    FUN_MOD = RunModel_GR4J,
    DatesR = BasinObs$DatesR,
    Precip = BasinObs$P,
    PotEvap = BasinObs$E
  )
  I2 <- SeriesAggreg(InputsModel, Format = "%Y%m")
  expect_warning(
    SeriesAggreg(I2, Format = "%Y%m"),
    regexp = "No time-step conversion was performed"
  )
  expect_equal(I2, suppressWarnings(SeriesAggreg(I2, Format = "%Y%m")))
})


test_that("SeriesAggreg.data.frame with first column not named DatesR should work", {
  expect_warning(
    SeriesAggreg(
      data.frame(BasinObs$DatesR, BasinObs$Qmm),
      Format = "%Y%m",
      ConvertFun = "sum"
    ),
    regexp = NA
  )
})


test_that("SeriesAggreg should work with ConvertFun 'min', 'max' and 'median'", {
  Qls <- BasinObs[, c("DatesR", "Qls")]
  test_ConvertFunRegime <- function(x, ConvertFun, Format) {
    expect_equal(
      nrow(SeriesAggreg(x, Format, ConvertFun = ConvertFun)),
      length(unique(format(BasinObs$DatesR, format = "%Y")))
    )
  }
  lapply(c("max", "min", "median"), function(x) {
    test_ConvertFunRegime(Qls, x, Format = "%Y")
  })
})


test_that("Error on convertFun Q without 0-100", {
  Qls <- BasinObs[, c("DatesR", "Qls")]
  expect_error(SeriesAggreg(Qls, Format = "%Y", "q101"))
  expect_error(SeriesAggreg(Qls, Format = "%Y", "q-2"))
  expect_error(SeriesAggreg(Qls, Format = "%Y", "q12.5"))
})


test_that("ConvertFun q50 should be equal to median", {
  Qls <- BasinObs[, c("DatesR", "Qls")]
  expect_equal(
    SeriesAggreg(Qls, Format = "%Y", "q50"),
    SeriesAggreg(Qls, Format = "%Y", "median")
  )
  expect_equal(
    SeriesAggreg(Qls, Format = "%Y", "q50"),
    SeriesAggreg(Qls, Format = "%Y", "q050")
  )
})

test_that("SeriesAggreg works with tibble", {
  Qls <- BasinObs[, c("DatesR", "Qls")]
  expect_warning(
    SeriesAggreg(tibble::tibble(Qls), Format = "%Y", "q50"),
    regexp = NA
  )
  expect_equal(
    SeriesAggreg(tibble::tibble(Qls), Format = "%Y", "q50"),
    SeriesAggreg(Qls, Format = "%Y", "q50")
  )
})

test_that("SeriesAggreg works for any time step", {
  d <- seq.POSIXt(
    from = as.POSIXct("2020-01-01 00:00:00", tz = "UTC"),
    to = as.POSIXct("2021-12-31 23:59:59", tz = "UTC"),
    by = "15 min"
  )
  df <- data.frame(d = d, v = 1)
  # Expect no warnings
  expect_warning(
    SeriesAggreg(df, Format = "%Y%m", ConvertFun = "sum"),
    regexp = NA
  )
  QM <- SeriesAggreg(df, Format = "%Y%m", ConvertFun = "sum")
  expect_equal(nrow(QM), 24)
  expect_equal(
    format(QM$d, format = "%Y%m"),
    c(sprintf("2020%02d", 1:12), sprintf("2021%02d", 1:12))
  )
  expect_equal(sum(QM$v), nrow(df))
})

Try the airGR package in your browser

Any scripts or data that you put into this service are public.

airGR documentation built on Dec. 12, 2025, 5:08 p.m.