Nothing
#' Calculates conditionals for latent class models.
#'
#' Calculates posterior expected values (conditionals) of class allocation probabilities for each individual.
#'
#' This function can only be used with latent class models without continuous heterogeneity.
#' @param model Model object. Estimated model object as returned by function \link{apollo_estimate}.
#' @param apollo_probabilities Function. Returns probabilities of the model to be estimated. Must receive three arguments:
#' \itemize{
#' \item \strong{\code{apollo_beta}}: Named numeric vector. Names and values of model parameters.
#' \item \strong{\code{apollo_inputs}}: List containing options of the model. See \link{apollo_validateInputs}.
#' \item \strong{\code{functionality}}: Character. Can be either \strong{\code{"components"}}, \strong{\code{"conditionals"}}, \strong{\code{"estimate"}} (default), \strong{\code{"gradient"}}, \strong{\code{"output"}}, \strong{\code{"prediction"}}, \strong{\code{"preprocess"}}, \strong{\code{"raw"}}, \strong{\code{"report"}}, \strong{\code{"shares_LL"}}, \strong{\code{"validate"}} or \strong{\code{"zero_LL"}}.
#' }
#' @param apollo_inputs List grouping most common inputs. Created by function \link{apollo_validateInputs}.
#' @return A matrix with the posterior class allocation probabilities for each individual.
#' @export
apollo_lcConditionals=function(model, apollo_probabilities, apollo_inputs){
if(!is.function(apollo_inputs$apollo_lcPars)) stop("SYNTAX ISSUE - This function is for latent class models. For other models use \"apollo_conditionals\".")
if(is.null(apollo_inputs$silent)) silent = FALSE else silent = apollo_inputs$silent
apollo_beta = model$estimate
apollo_fixed = model$apollo_fixed
#if(!silent) apollo_print("Updating inputs...")
#apollo_inputs <- apollo_validateInputs(silent=TRUE, recycle=TRUE)
### Warn the user in case elements in apollo_inputs are different from those in the global environment
apollo_compareInputs(apollo_inputs)
apollo_control = apollo_inputs[["apollo_control"]]
database = apollo_inputs[["database"]]
apollo_lcPars = apollo_inputs[["apollo_lcPars"]]
class_prob = "pi_values" # name of lcpars component with allocation probabilities
apollo_randCoeff = apollo_inputs[["apollo_randCoeff"]]
apollo_checkArguments(apollo_probabilities,apollo_randCoeff,apollo_lcPars)
if(is.null(apollo_control$HB)) apollo_control$HB=FALSE
if(apollo_control$HB) stop("INCORRECT FUNCTION/SETTING USE - The function \'apollo_lcConditionals\' is not applicables for models estimated using HB!")
### Validation
if(apollo_control$mixing) stop("SYNTAX ISSUE - apollo_lcConditionals can only be used for latent class models without continuous random heterogeneity")
if(!silent) apollo_print("Calculating conditionals...")
### Get allocation and inClass probs
lcpars = with(c(apollo_beta, apollo_inputs$database, apollo_inputs$draws), {
environment(apollo_lcPars) <- environment()
apollo_lcPars(apollo_beta, apollo_inputs)
})
if(is.null(lcpars[[class_prob]])) stop("SYNTAX ISSUE - The lcpars function needs to create an object called \"pi_values\"!")
L = apollo_probabilities(apollo_beta, apollo_inputs, functionality="output")
classes = length(lcpars[[class_prob]])
components = length(L)
if(components>(classes+1)) stop("SYNTAX ISSUE - apollo_lcConditionals can only be used for latent class models alone (i.e. no hybrid choice)")
if(components!=(classes+1)) stop("SYNTAX ISSUE - Model should contain one component per class, and an overall model!")
### Calculate posterior class allocation probs
post_pi = vector(mode="list", length=classes)
indivID <- apollo_inputs$database[,apollo_inputs$apollo_control$indivID]
nObsPerIndiv <- setNames(sapply(as.list(unique(indivID)),function(x) sum(indivID==x)),unique(indivID))
for(s in 1:classes){
# adjust dimensionality of pi if necessary
pi <- lcpars[[class_prob]][[s]]
rL <- ifelse(is.array( L[[s]]), nrow( L[[s]]), length( L[[s]]))
rP <- ifelse(is.array(pi), nrow(pi), length(pi))
if(rP!=1 && rL!=1 && rP!=rL){
if(rP>rL) pi <- apollo_firstRow(pi, apollo_inputs)
if(rP<rL && is.vector(pi)) pi <- rep(pi, each=nObsPerIndiv)
}
if(is.list(L[[s]])){
if(!is.null(L[[s]]$model)) L[[s]] = L[[s]]$model else{
stop("SPECIFICATION ISSUE: the within class probabilities are lists that do not contain an entry called model!")
}
}
post_pi[[s]] = pi*L[[s]]/L[["model"]]
}; rm(pi, rL, rP)
### Prepare output
conditionals = matrix(unlist(post_pi), ncol = length(post_pi), byrow = FALSE)
classnames = paste("Class ",seq(1:classes),sep="")
conditionals = data.frame(ID=unique(database[,apollo_control$indivID]), conditionals)
return(conditionals)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.