Nothing
#' Source: https://esoil.io/TERNLandscapes/Public/Pages/SLGA/index.html
#'
#' @title Generate a synthetic APSIM soil profile from the SLGA soil database
#' @description Retrieves soil data from the SLGA database (Australia) and converts it to an APSIM soil_profile object
#' @name get_slga_soil_profile
#' @param lonlat Longitude and latitude vector (e.g. c(151.8306, -27.4969)).
#' @param statistic default is the mean
#' @param soil.profile a soil profile to fill in in case the default one is not appropriate
#' @param find.location.name default is TRUE. Use either maps package or photon API to find Country/State.
#' If you are running this function many times it might be better to set this to FALSE.
#' @param fix whether to fix compatibility between saturation and bulk density (default is FALSE).
#' @param verbose argument passed to the fix function.
#' @param check whether to check the soil profile (default is TRUE)
#' @param physical whether soil physical properties are obtained from the data base or through \sQuote{SR}, Saxton and Rawls pedotransfer functions.
#' @param xargs additional arguments passed to \code{\link{apsimx_soil_profile}} or \sQuote{apsimx:::approx_soil_variable} function. At the moment these are:
#' \sQuote{soil.bottom}, \sQuote{method} and \sQuote{nlayers}.
#' @return it generates an object of class \sQuote{soil_profile}.
#' @seealso \code{\link{apsimx_soil_profile}}, \code{\link{edit_apsim_replace_soil_profile}}, \code{\link{edit_apsimx_replace_soil_profile}}.
#' @export
#' @author Fernando E. Miguez, Chloe (Yunru Lai), Eric Zurcher (CSIRO) and Andrew Moore (CSIRO)
#' @examples
#' \dontrun{
#' ## Get soil profile properties for a single point
#' sp1 <- get_slga_soil_profile(lonlat = c(151.8306, -27.4969), fix = TRUE, verbose = FALSE)
#' ## Visualize
#' plot(sp1)
#' plot(sp1, property = "water")
#' }
# this is based on the get_isric_soil_profile function of Fernando Miguez, Eric Zurcher and Andrew Moore
get_slga_soil_profile <- function(lonlat,
statistic = c("mean", "Q0.5"),
soil.profile,
find.location.name = TRUE,
fix = FALSE,
verbose = TRUE,
check = TRUE,
physical = c("default", "SR"),
xargs = NULL){
statistic <- match.arg(statistic)
physical <- match.arg(physical)
#### Create extent step ####
lon <- as.numeric(lonlat[1])
lat <- as.numeric(lonlat[2])
## Determine if the location is in Australia
if(requireNamespace("maps", quietly = TRUE)){
country <- maps::map.where(x = lon, y = lat)
if(country != "Australia" || is.na(country))
stop("These coordinates do not correspond to a location in Australia. \n Did you specify the coordinates correctly?")
}
## This code is now unnecessay, I think
if (lon < 112 || lon > 154) stop("Longitude should be between 112 and 154 for the extent of Australia")
if (lat < -44 || lat > -10) stop("Latitude should be between -44 and -10 for the extent of Australia")
slga <- get_slga_soil(lonlat = lonlat)
## These are the default thicknesses in ISRIC
## They also match thickness values in SLGA
## thcknss <- c(50, 100, 150, 300, 400, 1000) ## in mm
thcknss <- slga$thickness * 10 ## converts cm to mm
o.thcknss <- thcknss
## Some variables can be passed to apsimx:::approx_soil_variable
soil.bottom <- 200
method <- "constant"
nlayers <- 6
crps <- c("Maize", "Soybean", "Wheat")
if(!is.null(xargs)){
### Soil bottom
if(!is.null(xargs$soil.bottom) && is.null(xargs$nlayers)){
soil.bottom <- xargs$soil.bottom
thcknss <- apsimx_soil_profile(nlayers = nlayers, soil.bottom = soil.bottom)$soil$Thickness
}
### Method
if(!is.null(xargs$method)){
method <- xargs$method
}
### Number of layers
if(!is.null(xargs$nlayers) && is.null(xargs$soil.bottom)){
nlayers <- xargs$nlayers
### Need to redefine 'Thickness'
thcknss <- apsimx_soil_profile(nlayers = nlayers)$soil$Thickness
}
### Do I need this?
if(!is.null(xargs$nlayers) && !is.null(xargs$soil.bottom)){
nlayers <- xargs$nlayers
soil.bottom <- xargs$soil.bottom
### Need to redefine 'Thickness'
thcknss <- apsimx_soil_profile(nlayers = nlayers, soil.bottom = soil.bottom)$soil$Thickness
}
### Crops
if(!is.null(xargs$crops)){
crps <- xargs$crops
}
}
## Create the empty soil profile
if(missing(soil.profile)){
if(is.null(xargs)){
new.soil <- FALSE
}else{
new.soil <- TRUE
}
soil_profile <- apsimx_soil_profile(nlayers = nlayers, Thickness = thcknss, soil.bottom = soil.bottom, crops = crps)
soil_profile$soil$ParticleSizeClay <- NA
soil_profile$soil$ParticleSizeSilt <- NA
soil_profile$soil$ParticleSizeSand <- NA
soil_profile$soil$CEC <- NA
soil_profile$soil$Nitrogen <- NA
soil_profile$soil$DUL <- NA
soil_profile$soil$LL15 <- NA
soil_profile$soil$SAT <- NA
}else{
soil_profile <- soil.profile
new.soil <- TRUE
}
# Calculate SAT (saturation) for each depth layer based on BD and particle density (2.65 g/cm³)
particle_density <- 2.65 # Particle density (g/cm³)
if (new.soil) {
sp.xout <- cumsum(soil_profile$soil$Thickness)
### Will this take care of both number of layers and soil.bottom?
if(length(cumsum(thcknss)) != length(slga[["bdod"]])){
bdod.dat <- stats::approx(data.frame(cumsum(o.thcknss), slga[["bdod"]]), xout = sp.xout)
soc.dat <- stats::approx(data.frame(cumsum(o.thcknss), slga[["soc"]]), xout = sp.xout)
phh2o.dat <- stats::approx(data.frame(cumsum(o.thcknss), slga[["phh2o"]]), xout = sp.xout)
clay.dat <- stats::approx(data.frame(cumsum(o.thcknss), slga[["clay"]]), xout = sp.xout)
sand.dat <- stats::approx(data.frame(cumsum(o.thcknss), slga[["sand"]]), xout = sp.xout)
nitrogen.dat <- stats::approx(data.frame(cumsum(o.thcknss), slga[["nitrogen"]]), xout = sp.xout)
cec.dat <- stats::approx(data.frame(cumsum(o.thcknss), slga[["cec"]]), xout = sp.xout)
## wv0010.dat <- approx(data.frame(cumsum(o.thcknss), wv0010[[1]]), xout = sp.xout)
wv0033.dat <- stats::approx(data.frame(cumsum(o.thcknss), slga[["wv0033"]]), xout = sp.xout)
wv1500.dat <- stats::approx(data.frame(cumsum(o.thcknss), slga[["wv1500"]]), xout = sp.xout)
sat.tmp <- (1- (slga[["bdod"]]/particle_density))*0.99
sat.dat <- stats::approx(data.frame(cumsum(o.thcknss), sat.tmp), xout = sp.xout)
}else{
bdod.dat <- data.frame(x = cumsum(thcknss), y = slga[["bdod"]])
soc.dat <- data.frame(x = cumsum(thcknss), y = slga[["soc"]])
phh2o.dat <- data.frame(x = cumsum(thcknss), y = slga[["phh2o"]])
clay.dat <- data.frame(x = cumsum(thcknss), y = slga[["clay"]])
sand.dat <- data.frame(x = cumsum(thcknss), y = slga[["sand"]])
nitrogen.dat <- data.frame(x = cumsum(thcknss), y = slga[["nitrogen"]])
cec.dat <- data.frame(x = cumsum(thcknss), y = slga[["cec"]])
wv0033.dat <- data.frame(x = cumsum(thcknss), y = slga[["wv0033"]])
wv1500.dat <- data.frame(x = cumsum(thcknss), y = slga[["wv1500"]])
sat.dat <- data.frame(x = cumsum(thcknss), y = (1- (slga[["bdod"]]/particle_density))*0.99)
}
soil_profile$soil$BD <- approx_soil_variable(bdod.dat,
xout = sp.xout, soil.bottom = soil.bottom, method = method, nlayers = nlayers)$y
soil_profile$soil$Carbon <- approx_soil_variable(soc.dat,
xout = sp.xout, soil.bottom = soil.bottom, method = method, nlayers = nlayers)$y
soil_profile$soil$PH <- approx_soil_variable(phh2o.dat,
xout = sp.xout, soil.bottom = soil.bottom, method = method, nlayers = nlayers)$y
soil_profile$soil$ParticleSizeClay <- approx_soil_variable(clay.dat,
xout = sp.xout, soil.bottom = soil.bottom, method = method, nlayers = nlayers)$y
soil_profile$soil$ParticleSizeSand <- approx_soil_variable(sand.dat,
xout = sp.xout, soil.bottom = soil.bottom, method = method, nlayers = nlayers)$y
soil_profile$soil$Nitrogen <- approx_soil_variable(nitrogen.dat,
xout = sp.xout, soil.bottom = soil.bottom, method = method, nlayers = nlayers)$y
soil_profile$soil$CEC <- approx_soil_variable(cec.dat,
xout = sp.xout, soil.bottom = soil.bottom, method = method, nlayers = nlayers)$y
soil_profile$soil$SAT <- approx_soil_variable(sat.dat,
xout = sp.xout, soil.bottom = soil.bottom, method = method, nlayers = nlayers)$y * 1e-3
soil_profile$soil$DUL <- approx_soil_variable(wv0033.dat,
xout = sp.xout, soil.bottom = soil.bottom, method = method, nlayers = nlayers)$y * 1e-3
soil_profile$soil$LL15 <- approx_soil_variable(wv1500.dat,
xout = sp.xout, soil.bottom = soil.bottom, method = method, nlayers = nlayers)$y * 1e-3
} else {
soil_profile$soil$BD <- slga[["bdod"]] # Bulk density
soil_profile$soil$Carbon <- slga[["soc"]] # Soil organic carbon
soil_profile$soil$PH <- slga[["phh2o"]] # pH
soil_profile$soil$ParticleSizeClay <- slga[["clay"]] # Clay percentage
soil_profile$soil$ParticleSizeSand <- slga[["sand"]] # Sand percentage
soil_profile$soil$ParticleSizeSilt <- slga[["silt"]] # Silt percentage
soil_profile$soil$Nitrogen <- slga[["nitrogen"]] # Nitrogen content
soil_profile$soil$CEC <- slga[["cec"]] # Cation exchange capacity
soil_profile$soil$DUL <- slga[["wv0033"]] * 1e-2 # Drained upper limit
soil_profile$soil$LL15 <- slga[["wv1500"]] * 1e-2 # Lower limit (wilting point)
soil_profile$soil$SAT <- (1 - (soil_profile$soil$BD / particle_density))*0.99 # This is Chloe's method
}
soil_profile$soil$ParticleSizeSilt <- 100 - (soil_profile$soil$ParticleSizeSand + soil_profile$soil$ParticleSizeClay)
# Ensure SAT is greater than DUL; if not, set SAT to 1.1 times DUL
soil_profile$soil$SAT <- ifelse(soil_profile$soil$SAT > soil_profile$soil$DUL,
soil_profile$soil$SAT,
1.1 * soil_profile$soil$DUL)
## Populating DUL and LL. These are equations from Table 1 in Saxton and Rawls 2006
if(physical == "SR"){
soil_profile$soil$DUL <- sr_dul(soil_profile$soil$ParticleSizeClay, soil_profile$soil$ParticleSizeSand, soil_profile$soil$Carbon * 2)
soil_profile$soil$LL15 <- sr_ll(soil_profile$soil$ParticleSizeClay, soil_profile$soil$ParticleSizeSand, soil_profile$soil$Carbon * 2)
DUL_S <- sr_dul_s(soil_profile$soil$ParticleSizeClay, soil_profile$soil$ParticleSizeSand, soil_profile$soil$Carbon * 2)
soil_profile$soil$SAT <- sr_sat(soil_profile$soil$ParticleSizeSand, soil_profile$soil$DUL, DUL_S)
}
## This calculation of KS is a new addition (2025-01-22)
soil_profile$soil$KS <- sr_ks(soil_profile$soil$ParticleSizeClay, soil_profile$soil$ParticleSizeSand, soil_profile$soil$Carbon * 2)
soil_profile$soil$AirDry <- soil_profile$soil$LL15
soil_profile$soil$AirDry[1] <- soil_profile$soil$LL15[1] * 0.5 ## AirDry is half of LL for the first layer
for(i in soil_profile$crops){
soil_profile$soil[[paste0(i,".LL")]] <- soil_profile$soil$LL15 ## Without better information
}
#### Passing soil properties from soilwat
## The soil texture class in the metadata will be based on the first layer only
# note that this is the USA texture triangle - will need to update to the Australian one later
txt_clss <- texture_class_slga(soil_profile$soil$ParticleSizeClay * 1e-2, soil_profile$soil$ParticleSizeSilt * 1e-2)
# Get soil parameters
t2sp <- texture2soilParms_slga(txt_clss)
if(missing(soil.profile)){
soil_profile$soilwat <- soilwat_parms(Salb = t2sp$Albedo, CN2Bare = t2sp$CN2,
SWCON = t2sp$SWCON,
Thickness = thcknss)
}else{
soil_profile$soilwat <- soilwat_parms(Salb = t2sp$Albedo, CN2Bare = t2sp$CN2,
SWCON = t2sp$SWCON,
Thickness = soil_profile$soil$Thickness)
}
### Passing the initial soil water?
if(new.soil){
ini.wat <- (soil_profile$soil$DUL + soil_profile$soil$LL15) / 2
isw <- initialwater_parms(Thickness = soil_profile$soil$Thickness,
InitialValues = ini.wat)
}else{
ini.wat <- (soil_profile$soil$DUL + soil_profile$soil$LL15) / 2
isw <- initialwater_parms(Thickness = thcknss, InitialValues = ini.wat)
}
soil_profile$initialwater <- isw
## Will this always be Australia?
## photon might be nice for location
if(find.location.name){
if(requireNamespace("maps", quietly = TRUE)){
country <- maps::map.where(x = lon, y = lat)
if(country == "USA"){
state <- toupper(maps::map.where(database = "county", x = lon, y = lat))
}else{
url <- paste0("https://photon.komoot.io/reverse?lon=", lon, "&lat=", lat)
fgeo <- jsonlite::fromJSON(url)
state <- fgeo$feature$properties$state
}
}else{
url <- paste0("https://photon.komoot.io/reverse?lon=", lon, "&lat=", lat)
fgeo <- jsonlite::fromJSON(url)
state <- fgeo$feature$properties$state
country <- fgeo$features$properties$country
}
}else{
state <- ""
country <- ""
}
#### Attributes ####
alist <- list()
alist$SoilType <- paste("SoilType = ", txt_clss)
alist$State <- state
alist$Country <- country
alist$Longitude <- lon
alist$Latitude <- lat
alist$DataSource <- paste("Original source is Soil and Landscape Grid of Australia. See: https://esoil.io/TERNLandscapes/Public/Pages/SLGA/index.html", Sys.time())
alist$Comments <- paste("resolution = 90 m",
"- taxonomic classification name =", txt_clss,
"- drainage class =", NA,
"- elevation =", NA,
"- slope =", NA,
"- geomdesc =", NA)
soil_profile$metadata <- alist
if(fix) soil_profile <- fix_apsimx_soil_profile(soil_profile, verbose = verbose)
if(check) check_apsimx_soil_profile(soil_profile)
return(soil_profile)
}
## Texture to other soil properties
## This function was vectorized by Chloe
## If more than one textured is supplied only the first one is used
## for CN2 and Albedo, but different SWCON values can be provided
## assuming that this is for deeper depths. This only makes sense
## if the first layer is the top layer and the other ones are the
## deeper layers of the soil profile
texture2soilParms_slga <- function(texture.class = "NO DATA") {
# Define texture classes and associated parameters
textureClasses <- c("clay", "silty clay", "sandy clay", "clay loam", "silty clay loam",
"sandy clay loam", "loam", "silty loam", "sandy loam", "silt",
"loamy sand", "sand", "NO DATA")
Albedo <- c(0.12, 0.12, 0.13, 0.13, 0.12, 0.13, 0.13, 0.14, 0.13, 0.13, 0.16, 0.19, 0.13)
CN2 <- c(73.0, 73.0, 73.0, 73.0, 73.0, 73.0, 73.0, 73.0, 68.0, 73.0, 68.0, 68.0, 73.0)
SWCON <- c(0.25, 0.3, 0.3, 0.4, 0.5, 0.5, 0.5, 0.5, 0.6, 0.5, 0.6, 0.75, 0.5)
# Match the first layer of texture.class
wtc <- match(texture.class[1], textureClasses, nomatch = length(textureClasses))
# Match all layers of texture.class for SWCON
swcon <- SWCON[match(texture.class, textureClasses, nomatch = length(textureClasses))]
# Return results
ans <- list(
textureClasses = textureClasses[wtc], # Only for the first layer
Albedo = Albedo[wtc], # Only for the first layer
CN2 = CN2[wtc], # Only for the first layer
SWCON = swcon # Vector for all layers
)
return(ans)
}
## Potentially useful function provided by Eric Zurcher
## written by Andrew Moore
## I think the values should be in the 0-1 range
#==========================================================================
# Texture class mapping function
#==========================================================================
# Re-express the PSD in terms of the International system, using an equation from Minasny et al. (2001)
# intl_clay_propn <- function( usda_clay, usda_silt ) {
# return( usda_clay)
# }
#
# intl_silt_propn <- function( usda_clay, usda_silt ) {
# return( max( 0.0, -0.0041 - 0.127*usda_clay + 0.553*usda_silt + 0.17*usda_clay^2 - 0.19*usda_silt^2 + 0.59*usda_clay*usda_silt ) )
# }
#
# intl_sand_propn <- function( usda_clay, usda_silt ) {
# return( 1.0 - intl_clay_propn( usda_clay, usda_silt ) - intl_silt_propn( usda_clay, usda_silt ) )
# }
# Texture triangle as equations
## The function below was written by Andrew Moore and/or Eric Zurcher and
## modified by Fernando Miguez and Chloe
# redefine the texture_class function to accept vectors
texture_class_slga <- function(usda_clay, usda_silt) {
if(length(usda_clay) != length(usda_silt))
stop("length of clay should be equal to length of silt", call. = FALSE)
if (any(usda_clay < 0 | usda_clay > 1)) stop("All values in usda_clay should be between 0 and 1")
if (any(usda_silt < 0 | usda_silt > 1)) stop("All values in usda_silt should be between 0 and 1")
if(any(usda_clay + usda_silt > 1))
stop("clay plus silt should be less than one", call. = FALSE)
intl_clay <- usda_clay
intl_silt <- usda_silt
intl_sand <- 1.0 - intl_clay - intl_silt
# Initialize result vector
classes <- rep(NA, length = length(usda_clay))
# Apply texture triangle rules
classes[(intl_sand < 0.75 - intl_clay) & (intl_clay >= 0.40)] <- "silty clay"
classes[(intl_sand < 0.75 - intl_clay) & (intl_clay >= 0.26) & is.na(classes)] <- "silty clay loam"
classes[(intl_sand < 0.75 - intl_clay) & is.na(classes)] <- "silty loam"
classes[(intl_clay >= 0.40 + (0.305 - 0.40) / (0.635 - 0.35) * (intl_sand - 0.35)) &
(intl_clay < 0.50 + (0.305 - 0.50) / (0.635 - 0.50) * (intl_sand - 0.50)) & is.na(classes)] <- "clay"
classes[(intl_clay >= 0.26 + (0.305 - 0.26) / (0.635 - 0.74) * (intl_sand - 0.74)) & is.na(classes)] <- "sandy clay"
classes[(intl_clay >= 0.26 + (0.17 - 0.26) / (0.83 - 0.49) * (intl_sand - 0.49)) &
(intl_clay < 0.10 + (0.305 - 0.10) / (0.635 - 0.775) * (intl_sand - 0.775)) & is.na(classes)] <- "clay loam"
classes[(intl_clay >= 0.26 + (0.17 - 0.26) / (0.83 - 0.49) * (intl_sand - 0.49)) & is.na(classes)] <- "sandy clay loam"
classes[(intl_clay >= 0.10 + (0.12 - 0.10) / (0.63 - 0.775) * (intl_sand - 0.775)) &
(intl_clay < 0.10 + (0.305 - 0.10) / (0.635 - 0.775) * (intl_sand - 0.775)) & is.na(classes)] <- "loam"
classes[(intl_clay >= 0.10 + (0.12 - 0.10) / (0.63 - 0.775) * (intl_sand - 0.775)) & is.na(classes)] <- "sandy loam"
classes[(intl_clay < 0.00 + (0.08 - 0.00) / (0.88 - 0.93) * (intl_sand - 0.93)) & is.na(classes)] <- "loamy sand"
classes[is.na(classes)] <- "sand"
return(classes)
}
### The function below was created by Chloe (Yunru Lai)
### Modified by Fernando Miguez 2025-01-11
#' The data comes from https://esoil.io/TERNLandscapes/Public/Pages/SLGA/index.html
#'
#' @title Retrieve soil profile data from SLGA (Soils for Australia)
#' @description This function gets a soil profile for the Australia extent
#' @name get_slga_soil
#' @param lonlat Longitude and latitude vector (e.g. c(151.8306, -27.4969))
#' @return a data.frame with elements: depth (midpoint in cm), depths (as character in cm), thickness (cm), clay, sand, silt, wv1500, wv0033, bdod, nitrogen, phh2o, cec, soc
#' @author Chloe (Yunru Lai) and Fernando E. Miguez
#' @export
#' @examples
#' \dontrun{
#' ## retrieve data from longitude and latitude 151.8305805675806 and -27.496873026858598
#' ## Note: This can take a couple of minutes
#' slga.soil <- get_slga_soil(lonlat = c(151.8306, -27.4969))
#'
#' }
get_slga_soil <- function(lonlat) {
if(missing(lonlat))
stop("lonlat is missing without default", call. = FALSE)
#### Create extent step ####
longitude <- as.numeric(lonlat[1])
latitude <- as.numeric(lonlat[2])
if (longitude < 112 || longitude > 154) stop("Longitude should be between 112 and 154 for the extent of Australia")
if (latitude < -44 || latitude > -10) stop("Latitude should be between -44 and -10 for the extent of Australia")
### API endpoint
root.url <- "https://esoil.io/TERNLandscapes/Public/Products/TERN/SLGA/"
# Define properties
properties <- list(
clay = paste0(root.url, "CLY/CLY_000_005_EV_N_P_AU_TRN_N_20210902.tif"),
sand = paste0(root.url, "SND/SND_000_005_EV_N_P_AU_TRN_N_20210902.tif"),
silt = paste0(root.url, "SLT/SLT_000_005_EV_N_P_AU_TRN_N_20210902.tif"),
wv1500 = paste0(root.url, "L15/L15_000_005_EV_N_P_AU_TRN_N_20210614.tif"),
wv0033 = paste0(root.url, "DUL/DUL_000_005_EV_N_P_AU_TRN_N_20210614.tif"),
bdod = paste0(root.url, "BDW/BDW_000_005_EV_N_P_AU_TRN_N_20230607.tif"),
nitrogen = paste0(root.url, "NTO/NTO_000_005_EV_N_P_AU_NAT_C_20231101.tif"),
phh2o = paste0(root.url, "PHW/PHW_000_005_EV_N_P_AU_TRN_N_20220520.tif"),
cec = paste0(root.url, "CEC/CEC_000_005_EV_N_P_AU_TRN_N_20220826.tif"),
soc = paste0(root.url, "SOC/SOC_000_005_EV_N_P_AU_TRN_N_20220727.tif")
)
## Previously used property
# des = "https://esoil.io/TERNLandscapes/Public/Products/TERN/SLGA/DES/DES_000_200_EV_N_P_AU_TRN_C_20190901.tif",
# Define depths
depths <- c("000_005", "005_015", "015_030", "030_060", "060_100", "100_200")
depth.midpoint <- c(2.5, 10, 22.5, 45, 80, 150) ## In cm
thickness <- c(5, 10, 15, 30, 40, 100) ## In cm
# Initialize results list
results <- list()
# Loop through each property and depth
for (property_name in names(properties)) {
property_url <- properties[[property_name]]
property_results <- numeric(length(depths)) # Initialize vector of length 6
for (i in seq_along(depths)) {
depth <- depths[i]
# Replace "000_005" with the current depth
cog_path <- gsub("000_005", depth, property_url)
# Construct the API request URL
api_url <- paste0(
"https://esoil.io/TERNLandscapes/RasterProductsAPI/Drill?",
"format=json&verbose=false&COGPath=", cog_path,
"&latitude=", latitude, "&longitude=", longitude
)
# Make the API request
response <- jsonlite::fromJSON(api_url)
## This returns a data.frame when it works
if(!inherits(response, 'try-error')){
property_results[i] <- response$Value # Assign to vector
}else{
message("Could not retrieve data for", cog_path, latitude, longitude)
property_results[i] <- NA # Handle errors gracefully
}
}
# Store the results for the property
results[[property_name]] <- property_results
}
ans <- data.frame(depth = depth.midpoint, depths = depths, thickness = thickness,
as.data.frame(results))
return(ans)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.