Nothing
#' ARIMA Modeling of Time Series
#'
#' Fit an ARIMA model to a univariate time series. This function builds on
#' the ARIMA model fitting approach used in [stats::arima()] by fitting
#' model parameters via a random restart algorithm.
#'
#' @param diffuseControl Boolean indicator of whether or initial observations
#' will have likelihood values ignored if controlled by the diffuse prior,
#' i.e., have a Kalman gain of at least 1e4.
#' @param max_iters Maximum number of random restarts for methods "CSS-ML" and
#' "ML". If set to 1, the results of this algorithm is the same as
#' [stats::arima()] if argument \code{diffuseControl} is also set as TRUE.
#' \code{max_iters} is often not reached because the condition
#' \code{max_repeats} is typically achieved first.
#' @param max_repeats Integer. If the last \code{max_repeats} random starts did
#' not result in improved likelihoods, then stop the search. Each result of
#' the optim function is only considered to improve the likelihood if it does
#' so by more than \code{eps_tol}.
#' @param max_inv_root positive numeric value less than or equal to 1. This
#' number represents the maximum size of the inverted
#' MA or AR polynomial roots for a new parameter estimate to be considered an
#' improvement to previous estimates. Concerns of numeric stability arise
#' when the size of polynomial roots are near unity circle. The default value
#' 1 means that the the parameter values corresponding with the best
#' log-likelihood will be returned, even if they are near unity.
#' Suitable values of this parameter are near the value 1.
#' @param min_inv_root_dist positive numeric value less than 1. This number
#' represents the minimum distance between AR and MA polynomial roots for a
#' new parameter estimate to be considered an improvement on previous
#' estimates. This is intended to avoid the possibility of returning
#' parameter estimates with nearly canceling roots. Appropriate choices are
#' values near 0.
#' @param eps_tol Tolerance for accepting a new solution to be better than a
#' previous solution in terms of log-likelihood. The default corresponds to a
#' one ten-thousandth unit increase in log-likelihood.
#' @inheritParams stats::arima
#' @returns
#' A list of class \code{c("Arima2", "Arima")}. This list contains all of the
#' same elements as the output of [stats::arima], along with some additional
#' elements. All elements of the output list are:
#' \describe{
#' \item{`coef`}{A vector of AR, MA, and regression coefficients. These can
#' be extracted by the [stats::coef] method.}
#' \item{`sigma2`}{The MLE of the variance of the innovations.}
#' \item{`var.coef`}{The estimated variance matrix of the coefficients
#' `coef`, which can be extracted by the [stats::vcov] method.}
#' \item{`mask`}{A vector containing boolean values, indicating which
#' parameters of the model were estimated.}
#' \item{`loglik`}{The maximized log-likelihood (of the differenced data).}
#' \item{`aic`}{The AIC value corresponding to the log-likelihood.}
#' \item{`arma`}{A compact form of the model specification, as a vector
#' giving the number of AR, MA, seasonal AR and seasonal MA coefficients,
#' plus the period and the number of non-seasonal and seasonal differences.}
#' \item{`residuals`}{The fitted innovations.}
#' \item{`call`}{The matched call.}
#' \item{`series`}{The name of the series x.}
#' \item{`code`}{The convergence value returned by [stats::optim].}
#' \item{`n.cond`}{The number of initial observations not used in the
#' fitting.}
#' \item{`nobs`}{The number of observations used for the fitting.}
#' \item{`model`}{A list representing the Kalman Filter used in the fitting.}
#' \item{`x`}{The input time series.}
#' \item{`num_starts`}{Number of restarts before convergence criteria was
#' satisfied.}
#' \item{`all_values`}{Numeric vector of length `num_starts` containing the
#' loglikelihood of every parameter initialization.}
#' }
#'
#' @export
#' @examples
#' # example code
#' set.seed(12345)
#' arima(miHuron_level$Average, order = c(2, 0, 1), max_iters = 100)
#'
#' @useDynLib arima2, ARIMA_transPars, ARIMA_CSS, TSconv, getQ0, getQ0bis, ARIMA_Like, ARIMA_Invtrans, ARIMA_Gradtrans, ARIMA_undoPars, .fixes = "C_"
arima <- function(x, order = c(0L, 0L, 0L),
seasonal = list(order = c(0L, 0L, 0L), period = NA),
xreg = NULL, include.mean = TRUE,
transform.pars = TRUE, fixed = NULL, init = NULL,
method = c("CSS-ML", "ML", "CSS"), n.cond,
SSinit = c("Rossignol2011", "Gardner1980"),
optim.method = "BFGS",
optim.control = list(), kappa = 1e6,
diffuseControl = TRUE,
max_iters = 100,
max_repeats = 10,
max_inv_root = 1,
min_inv_root_dist = 0,
eps_tol = 1e-4)
{
# This function is based on the arima function of the stats package
# of R. Below the copright statement of the arima function is reproduced.
#
# File src/library/stats/R/arima.R
# Part of the stats package
#
# Copyright (C) 2002-16 The R Core Team
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# http://www.r-project.org/Licenses/
#
# (arima2) Date: Dec 6, 2022
# Revised: Jan 23, 2023
"%+%" <- function(a, b) .Call(C_TSconv, a, b)
SSinit <- match.arg(SSinit)
SS.G <- SSinit == "Gardner1980"
## helper of armafn(), called by optim()
upARIMA <- function(mod, phi, theta) {
p <- length(phi); q <- length(theta)
mod$phi <- phi; mod$theta <- theta
r <- max(p, q + 1L)
if(p > 0) mod$T[1L:p, 1L] <- phi
if(r > 1L)
mod$Pn[1L:r, 1L:r] <-
if(SS.G) .Call(C_getQ0, phi, theta)
else .Call(C_getQ0bis, phi, theta, tol = 0)# tol=0: less checking
else
mod$Pn[1L, 1L] <- if (p > 0) 1/(1 - phi^2) else 1
mod$a[] <- 0
mod
}
arimaSS <- function(y, mod) {
## next call changes mod components a, P, Pn so beware!
.Call(C_ARIMA_Like, y, mod, 0L, TRUE, diffuseControl)
}
## the objective function called by optim()
armafn <- function(p, trans) {
par <- coef
par[mask] <- p
trarma <- .Call(C_ARIMA_transPars, par, arma, trans)
if(is.null(Z <- tryCatch(upARIMA(mod, trarma[[1L]], trarma[[2L]]),
error = function(e) NULL)))
return(.Machine$double.xmax)# bad parameters giving error, e.g. in solve(.)
if(ncxreg > 0) x <- x - xreg %*% par[narma + (1L:ncxreg)]
## next call changes Z components a, P, Pn so beware!
res <- .Call(C_ARIMA_Like, x, Z, 0L, FALSE, diffuseControl)
s2 <- res[1L]/res[3L]
0.5*(log(s2) + res[2L]/res[3L])
}
armaCSS <- function(p) {
par <- as.double(fixed)
par[mask] <- p
trarma <- .Call(C_ARIMA_transPars, par, arma, FALSE)
if(ncxreg > 0) x <- x - xreg %*% par[narma + (1L:ncxreg)]
res <- .Call(C_ARIMA_CSS, x, arma, trarma[[1L]], trarma[[2L]],
as.integer(ncond), FALSE)
0.5 * log(res)
}
arCheck <- function(ar) {
p <- max(which(c(1, -ar) != 0)) - 1
if(!p) return(TRUE)
all(Mod(polyroot(c(1, -ar[1L:p]))) > 1)
}
if (max_inv_root < 0) stop("max_inv_root must be positive.")
if (min_inv_root_dist > 1 || min_inv_root_dist < 0) stop("min_inv_root_dist must in the interval [0, 1].")
if (max_inv_root == 1) {
do_maxroot_test <- FALSE
} else {
do_maxroot_test <- TRUE
}
if (min_inv_root_dist == 0) {
do_min_dist_test <- FALSE
} else {
do_min_dist_test <- TRUE
}
series <- deparse1(substitute(x))
if(NCOL(x) > 1L)
stop("only implemented for univariate time series")
method <- match.arg(method)
x <- stats::as.ts(x)
if(!is.numeric(x))
stop("'x' must be numeric")
storage.mode(x) <- "double" # a precaution
dim(x) <- NULL
n <- length(x)
if (!is.logical(diffuseControl)) {
stop("'diffuseControl' must be logical.")
}
if(!missing(order))
if(!is.numeric(order) || length(order) != 3L || any(order < 0))
stop("'order' must be a non-negative numeric vector of length 3")
if(!missing(seasonal))
if(is.list(seasonal)) {
if(is.null(seasonal$order))
stop("'seasonal' must be a list with component 'order'")
if(!is.numeric(seasonal$order) || length(seasonal$order) != 3L
|| any(seasonal$order < 0L))
stop("'seasonal$order' must be a non-negative numeric vector of length 3")
} else if(is.numeric(order)) {
if(length(order) == 3L) seasonal <- list(order=seasonal)
else ("'seasonal' is of the wrong length")
} else stop("'seasonal' must be a list with component 'order'")
if (is.null(seasonal$period) || is.na(seasonal$period) || seasonal$period == 0)
seasonal$period <- stats::frequency(x)
arma <- as.integer(c(order[-2L], seasonal$order[-2L], seasonal$period,
order[2L], seasonal$order[2L]))
narma <- sum(arma[1L:4L])
xtsp <- stats::tsp(x)
stats::tsp(x) <- NULL
Delta <- 1.
for(i in seq_len(order[2L])) Delta <- Delta %+% c(1., -1.)
for(i in seq_len(seasonal$order[2L]))
Delta <- Delta %+% c(1, rep.int(0, seasonal$period-1), -1)
Delta <- - Delta[-1L]
nd <- order[2L] + seasonal$order[2L]
n.used <- sum(!is.na(x)) - length(Delta)
if (is.null(xreg)) {
ncxreg <- 0L
} else {
nmxreg <- deparse1(substitute(xreg))
if (NROW(xreg) != n) stop("lengths of 'x' and 'xreg' do not match")
ncxreg <- NCOL(xreg)
xreg <- as.matrix(xreg)
storage.mode(xreg) <- "double"
}
class(xreg) <- NULL
if (ncxreg > 0L && is.null(colnames(xreg)))
colnames(xreg) <-
if(ncxreg == 1L) nmxreg else paste0(nmxreg, 1L:ncxreg)
if (include.mean && (nd == 0L)) {
xreg <- cbind(intercept = rep(1, n), xreg = xreg)
ncxreg <- ncxreg + 1L
}
if(method == "CSS-ML") {
anyna <- anyNA(x)
if(ncxreg) anyna <- anyna || anyNA(xreg)
if(anyna) method <- "ML"
}
if (method == "CSS" || method == "CSS-ML") {
ncond <- order[2L] + seasonal$order[2L] * seasonal$period
ncond1 <- order[1L] + seasonal$period * seasonal$order[1L]
ncond <- ncond + if(!missing(n.cond)) max(n.cond, ncond1) else ncond1
} else ncond <- 0
if (is.null(fixed)) fixed <- rep(NA_real_, narma + ncxreg)
else if(length(fixed) != narma + ncxreg) stop("wrong length for 'fixed'")
mask <- is.na(fixed)
# If both 'fixed' and 'init' provided, check that they are
# the same (this doesn't affect model fitting, but becomes
# important when checking the stationarity of the fitted model,
# which only checks the vector init.)
if (any(mask)) {
if (is.null(init)) {
init <- rep(NA_real_, length(fixed))
init[!mask] <- fixed[!mask]
} else if (any(fixed[!mask] != init[!mask])) {
init[!mask] = fixed[!mask]
warning("Both arguments 'fixed' and 'init' provided, but provided coefficients did not match: setting non-missing 'init' values to corresponding values of 'fixed'.")
}
}
## if(!any(mask)) stop("all parameters were fixed")
no.optim <- !any(mask)
if(no.optim) transform.pars <- FALSE
if(transform.pars) {
ind <- arma[1L] + arma[2L] + seq_len(arma[3L])
if (any(!mask[seq_len(arma[1L])]) || any(!mask[ind])) {
warning("some AR parameters were fixed: setting transform.pars = FALSE")
transform.pars <- FALSE
}
}
init0 <- rep.int(0, narma)
parscale <- rep(1, narma)
if (ncxreg) {
cn <- colnames(xreg)
orig.xreg <- (ncxreg == 1L) || any(!mask[narma + 1L:ncxreg])
if (!orig.xreg) {
S <- svd(stats::na.omit(xreg))
xreg <- xreg %*% S$v
}
dx <- x
dxreg <- xreg
if(order[2L] > 0L) {
dx <- diff(dx, 1L, order[2L])
dxreg <- diff(dxreg, 1L, order[2L])
}
if(seasonal$period > 1L && seasonal$order[2L] > 0) {
dx <- diff(dx, seasonal$period, seasonal$order[2L])
dxreg <- diff(dxreg, seasonal$period, seasonal$order[2L])
}
fit <- if(length(dx) > ncol(dxreg))
stats::lm(dx ~ dxreg - 1, na.action = stats::na.omit)
else list(rank = 0L)
if(fit$rank == 0L) {
## Degenerate model. Proceed anyway so as not to break old code
fit <- stats::lm(x ~ xreg - 1, na.action = stats::na.omit)
}
isna <- is.na(x) | apply(xreg, 1L, anyNA)
n.used <- sum(!isna) - length(Delta)
init0 <- c(init0, coef(fit))
ses <- summary(fit)$coefficients[, 2L]
parscale <- c(parscale, 10 * ses)
}
if (n.used <= 0) stop("too few non-missing observations")
if(!is.null(init)) {
if(length(init) != length(init0))
stop("'init' is of the wrong length")
if(any(ind <- is.na(init))) init[ind] <- init0[ind]
if(method == "ML") {
## check stationarity
if(arma[1L] > 0)
if(!arCheck(init[1L:arma[1L]]))
stop("non-stationary AR part")
if(arma[3L] > 0)
if(!arCheck(init[sum(arma[1L:2L]) + 1L:arma[3L]]))
stop("non-stationary seasonal AR part")
if(transform.pars)
init <- .Call(C_ARIMA_Invtrans, as.double(init), arma)
}
} else init <- init0
coef <- as.double(fixed)
if(!("parscale" %in% names(optim.control)))
optim.control$parscale <- parscale[mask]
if(method == "CSS") {
i_start = NULL
res <- if(no.optim)
list(convergence=0L, par=numeric(), value=armaCSS(numeric()))
else
stats::optim(init[mask], armaCSS, method = optim.method, hessian = TRUE,
control = optim.control)
if(res$convergence > 0)
warning(gettextf("possible convergence problem: optim gave code = %d",
res$convergence), domain = NA)
coef[mask] <- res$par
## set model for predictions
trarma <- .Call(C_ARIMA_transPars, coef, arma, FALSE)
mod <- stats::makeARIMA(trarma[[1L]], trarma[[2L]], Delta, kappa, SSinit)
if(ncxreg > 0) x <- x - xreg %*% coef[narma + (1L:ncxreg)]
arimaSS(x, mod)
val <- .Call(C_ARIMA_CSS, x, arma, trarma[[1L]], trarma[[2L]],
as.integer(ncond), TRUE)
sigma2 <- val[[1L]]
var <- if(no.optim) numeric() else solve(res$hessian * n.used)
value <- 2 * n.used * res$value + n.used + n.used * log(2 * pi)
all_values <- value
} else {
if (method == "CSS-ML") {
res <- if(no.optim)
list(convergence=0L, par=numeric(), value=armaCSS(numeric()))
else
stats::optim(init[mask], armaCSS, method = optim.method,
hessian = FALSE, control = optim.control)
if(res$convergence == 0) init[mask] <- res$par
## check stationarity
if(arma[1L] > 0)
if(!arCheck(init[1L:arma[1L]]))
stop("non-stationary AR part from CSS")
if(arma[3L] > 0)
if(!arCheck(init[sum(arma[1L:2L]) + 1L:arma[3L]]))
stop("non-stationary seasonal AR part from CSS")
ncond <- 0L
}
# Start of ML estimation
best_value <- Inf
best_coef <- coef
converged <- FALSE
all_values <- c()
num_repeat <- 1
for (i_start in 1:max_iters) { # Do random restarts.
if (i_start == 1) { # use CSS start as baseline, same result as stats::arima
if(transform.pars) {
new_init <- .Call(C_ARIMA_Invtrans, init, arma)
## enforce invertibility
if(arma[2L] > 0) {
ind <- arma[1L] + 1L:arma[2L]
new_init[ind] <- .maInvert(new_init[ind])
}
if(arma[4L] > 0) {
ind <- sum(arma[1L:3L]) + 1L:arma[4L]
new_init[ind] <- .maInvert(new_init[ind])
}
} else {
new_init <- init
}
trarma <- .Call(C_ARIMA_transPars, new_init, arma, transform.pars)
mod <- stats::makeARIMA(trarma[[1L]], trarma[[2L]], Delta, kappa, SSinit)
best_res <- if(no.optim)
list(convergence = 0, par = numeric(),
value = armafn(numeric(), as.logical(transform.pars)))
else
stats::optim(new_init[mask], armafn, method = optim.method,
hessian = TRUE, control = optim.control,
trans = as.logical(transform.pars))
if(best_res$convergence > 0)
warning(gettextf("possible convergence problem: optim gave code = %d",
best_res$convergence), domain = NA)
best_coef[mask] <- best_res$par
if(transform.pars) {
## enforce invertibility
if(arma[2L] > 0L) {
ind <- arma[1L] + 1L:arma[2L]
if(all(mask[ind]))
best_coef[ind] <- .maInvert(best_coef[ind])
}
if(arma[4L] > 0L) {
ind <- sum(arma[1L:3L]) + 1L:arma[4L]
if(all(mask[ind]))
best_coef[ind] <- .maInvert(best_coef[ind])
}
if(any(best_coef[mask] != best_res$par)) { # need to re-fit
oldcode <- best_res$convergence
best_res <- stats::optim(best_coef[mask], armafn, method = optim.method,
hessian = TRUE,
control = list(maxit = 0L,
parscale = optim.control$parscale),
trans = TRUE)
best_res$convergence <- oldcode
best_coef[mask] <- best_res$par
}
## do it this way to ensure hessian was computed inside
## stationarity region
A <- .Call(C_ARIMA_Gradtrans, as.double(best_coef), arma)
A <- A[mask, mask]
best_var <- crossprod(A, solve(best_res$hessian * n.used, A))
best_coef <- .Call(C_ARIMA_undoPars, best_coef, arma)
} else best_var <- if(no.optim) numeric() else solve(best_res$hessian * n.used)
best_trarma <- .Call(C_ARIMA_transPars, best_coef, arma, FALSE)
best_mod <- stats::makeARIMA(best_trarma[[1L]], best_trarma[[2L]], Delta, kappa, SSinit)
best_val <- if(ncxreg > 0L)
arimaSS(x - xreg %*% best_coef[narma + (1L:ncxreg)], best_mod)
else arimaSS(x, best_mod)
best_sigma2 <- best_val[[1L]][1L]/n.used
best_value <- 2 * n.used * best_res$value + n.used + n.used * log(2 * pi)
all_values <- c(all_values, best_value)
} else { # New starting value
# Many things can go wrong when using a random starting point as
# initialization for ML estimation using stats::optim. Because the
# CSS-ML approach of stats::arima is considered a reasonable approach,
# we use that as a baseline and only get a different result if there is
# no issues when performing the random restart algorithm. We check
# ensure this using the try-catch statement below. We also suppress
# warnings because each random starting point may produce a convergence
# warning.
suppressWarnings(
restart_result <- tryCatch(
{
#### START
if (include.mean) {
new_init <- init
new_init[mask] <- .sample_ARMA_coef(
arma = arma,
intercept = init[length(init)],
Mod_bounds = c(0.05, 0.95),
min_inv_root_dist = 0.01
)[mask]
} else {
new_init <- init
new_init[mask] <- .sample_ARMA_coef(
arma = arma,
Mod_bounds = c(0.05, 0.95),
min_inv_root_dist = 0.01
)[mask]
}
if(transform.pars) {
new_init <- .Call(C_ARIMA_Invtrans, new_init, arma)
## enforce invertibility
if(arma[2L] > 0) {
ind <- arma[1L] + 1L:arma[2L]
new_init[ind] <- .maInvert(new_init[ind])
}
if(arma[4L] > 0) {
ind <- sum(arma[1L:3L]) + 1L:arma[4L]
new_init[ind] <- .maInvert(new_init[ind])
}
}
trarma <- .Call(C_ARIMA_transPars, new_init, arma, transform.pars)
mod <- stats::makeARIMA(trarma[[1L]], trarma[[2L]], Delta, kappa, SSinit)
res <- if(no.optim)
list(convergence = 0, par = numeric(),
value = armafn(numeric(), as.logical(transform.pars)))
else
stats::optim(new_init[mask], armafn, method = optim.method,
hessian = TRUE, control = optim.control,
trans = as.logical(transform.pars))
if(res$convergence > 0)
warning(gettextf("possible convergence problem: optim gave code = %d",
res$convergence), domain = NA)
coef[mask] <- res$par
if(transform.pars) {
## enforce invertibility
if(arma[2L] > 0L) {
ind <- arma[1L] + 1L:arma[2L]
if(all(mask[ind]))
coef[ind] <- .maInvert(coef[ind])
}
if(arma[4L] > 0L) {
ind <- sum(arma[1L:3L]) + 1L:arma[4L]
if(all(mask[ind]))
coef[ind] <- .maInvert(coef[ind])
}
if(any(coef[mask] != res$par)) { # need to re-fit
oldcode <- res$convergence
res <- stats::optim(coef[mask], armafn, method = optim.method,
hessian = TRUE,
control = list(maxit = 0L,
parscale = optim.control$parscale),
trans = TRUE)
res$convergence <- oldcode
coef[mask] <- res$par
}
## do it this way to ensure hessian was computed inside
## stationarity region
A <- .Call(C_ARIMA_Gradtrans, as.double(coef), arma)
A <- A[mask, mask]
var <- crossprod(A, solve(res$hessian * n.used, A))
coef <- .Call(C_ARIMA_undoPars, coef, arma)
} else var <- if(no.optim) numeric() else solve(res$hessian * n.used)
trarma <- .Call(C_ARIMA_transPars, coef, arma, FALSE)
mod <- stats::makeARIMA(trarma[[1L]], trarma[[2L]], Delta, kappa, SSinit)
val <- if(ncxreg > 0L)
arimaSS(x - xreg %*% coef[narma + (1L:ncxreg)], mod)
else arimaSS(x, mod)
sigma2 <- val[[1L]][1L]/n.used
value <- 2 * n.used * res$value + n.used + n.used * log(2 * pi)
list(
i_trarma = trarma,
i_mod = mod,
i_val = val,
i_sigma2 = sigma2,
i_value = value,
i_res = res,
i_coef = coef,
i_var = var,
error = 0
)
#### End
},
error = function(e) list(i_trarma = trarma, i_mod = mod, i_val = NULL,
i_sigma2 = NULL, i_value = Inf, i_res = NULL,
i_coef = NULL, i_var = NULL, error = 1)
) # End trycatch
)
# Make sure the best fit also has a proper covariant matrix for coefficients.
suppressWarnings(
valid_test <- !is.null(restart_result$i_var) && !any(is.nan(sqrt(diag(restart_result$i_var))))
)
if (do_min_dist_test && !is.null(restart_result$i_coef)) { # Check if there are (nearly) canceling roots;
if (arma[1L] > 0 && arma[2L] > 0) { # If there are both AR and MA coefs
tmp_ar_pars <- restart_result$i_coef[1L:arma[1L]]
tmp_ma_pars <- restart_result$i_coef[arma[1L] + 1L:arma[2L]]
inv_ma_roots <- 1 / polyroot(c(1, tmp_ma_pars))
inv_ar_roots <- 1 / polyroot(c(1, -tmp_ar_pars))
inv_root_dist <- min(Mod(outer(inv_ar_roots, inv_ma_roots, FUN = '-')))
valid_test <- valid_test && (inv_root_dist > min_inv_root_dist)
}
if (arma[3L] > 0 && arma[4L] > 0) { # If there are both seasonal MA and seasonal AR coefs
tmp_sar_pars <- restart_result$i_coef[sum(arma[1L:2L]) + 1L:arma[3L]]
tmp_sma_pars <- restart_result$i_coef[sum(arma[1L:3L]) + 1L:arma[4L]]
inv_sma_roots <- 1 / polyroot(c(1, tmp_sma_pars))
inv_sar_roots <- 1 / polyroot(c(1, -tmp_sar_pars))
inv_sroot_dist <- min(Mod(outer(inv_sar_roots, inv_sma_roots, FUN = '-')))
valid_test <- valid_test && (inv_sroot_dist > min_inv_root_dist)
}
}
if (do_maxroot_test && !is.null(restart_result$i_coef)) { # Make sure all roots are not near boundary
if (arma[1L] > 0) { # If there are both AR coefs
tmp_ar_pars <- restart_result$i_coef[1L:arma[1L]]
inv_ar_roots <- 1 / polyroot(c(1, -tmp_ar_pars))
valid_test <- valid_test && (max(Mod(inv_ar_roots)) < max_inv_root)
}
if (arma[2L] > 0) { # If there are MA coefs
tmp_ma_pars <- restart_result$i_coef[arma[1L] + 1L:arma[2L]]
inv_ma_roots <- 1 / polyroot(c(1, tmp_ma_pars))
valid_test <- valid_test && (max(Mod(inv_ma_roots)) < max_inv_root)
}
if (arma[3L] > 0) { # If there are both seasonal MA and seasonal AR coefs
tmp_sar_pars <- restart_result$i_coef[sum(arma[1L:2L]) + 1L:arma[3L]]
inv_sar_roots <- 1 / polyroot(c(1, -tmp_sar_pars))
valid_test <- valid_test && (max(Mod(inv_sar_roots)) < max_inv_root)
}
if (arma[4L] > 0) {
tmp_sma_pars <- restart_result$i_coef[sum(arma[1L:3L]) + 1L:arma[4L]]
inv_sma_roots <- 1 / polyroot(c(1, tmp_sma_pars))
valid_test <- valid_test && (max(Mod(inv_sma_roots)) < max_inv_root)
}
}
if (restart_result$error == 0 && restart_result$i_value + (eps_tol * 2) < best_value && valid_test) {
best_coef <- restart_result$i_coef
best_res <- restart_result$i_res
best_var <- restart_result$i_var
best_trarma <- restart_result$i_trarma
best_mod <- restart_result$i_mod
best_val <- restart_result$i_val
best_sigma2 <- restart_result$i_sigma2
best_value <- restart_result$i_value
num_repeat <- 1
} else {
num_repeat <- num_repeat + 1
}
all_values <- c(all_values, best_value)
converged <- num_repeat >= max_repeats
# converged <- pnorm(2 * 0.3 * sqrt(i_start)) - pnorm(-2 * 0.3 * sqrt(i_start)) - (1 - get_rho_hat(all_values, eps_tol)/i_start)^(i_start + num_repeat) >= 0.99
if (converged) {
break
}
}
}
coef <- best_coef
res <- best_res
var <- best_var
trarma <- best_trarma
mod <- best_mod
val <- best_val
sigma2 <- best_sigma2
value <- best_value
} # End of ML Estimation
# value <- 2 * n.used * res$value + n.used + n.used * log(2 * pi)
aic <- if(method != "CSS") value + 2*sum(mask) + 2 else NA
nm <- NULL
if (arma[1L] > 0L) nm <- c(nm, paste0("ar", 1L:arma[1L]))
if (arma[2L] > 0L) nm <- c(nm, paste0("ma", 1L:arma[2L]))
if (arma[3L] > 0L) nm <- c(nm, paste0("sar", 1L:arma[3L]))
if (arma[4L] > 0L) nm <- c(nm, paste0("sma", 1L:arma[4L]))
if (ncxreg > 0L) {
nm <- c(nm, cn)
if(!orig.xreg) {
ind <- narma + 1L:ncxreg
coef[ind] <- S$v %*% coef[ind]
A <- diag(narma + ncxreg)
A[ind, ind] <- S$v
A <- A[mask, mask]
var <- A %*% var %*% t(A)
}
}
names(coef) <- nm
if(!no.optim) dimnames(var) <- list(nm[mask], nm[mask])
resid <- val[[2L]]
stats::tsp(resid) <- xtsp
class(resid) <- "ts"
structure(list(coef = coef, sigma2 = sigma2, var.coef = var, mask = mask,
loglik = -0.5 * value, aic = aic, arma = arma,
residuals = resid, call = match.call(), series = series,
code = res$convergence, n.cond = ncond, nobs = n.used,
model = mod, x = x, num_starts = i_start,
all_values = -0.5 * all_values),
class = c("Arima2", "Arima"))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.